CHAPTER 5

TABLE OF CONTENTS

R614-301-500. Engineering

* 5.12 Certification
* 5.20 Operation Plan
* 5.30 Operational Design Criteria and Plans
** 5.40 Reclamation Plan
** 5.50 Reclamation Design Criteria and Plans

* For inclusion in Operation Plan, October 1990
** For inclusion in Reclamation Plan, January 1991
WELLINGTON PREPARATION PLANT
MAPS IN MRP
(10/23/96)

<table>
<thead>
<tr>
<th>MAP NAME</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Cross Sections</td>
<td>A9-1432</td>
</tr>
<tr>
<td>Dryer Pond As Constructed</td>
<td>A9-1464</td>
</tr>
<tr>
<td>Temporary Rock & Coal Waste Storage Area</td>
<td>A9-1470</td>
</tr>
<tr>
<td>Auxiliary Pond</td>
<td>C9-1285</td>
</tr>
<tr>
<td>Road Cross Sections</td>
<td>C9-1286</td>
</tr>
<tr>
<td>Geologic Map - Wellington Load-Out Facility</td>
<td>C9-1213-R</td>
</tr>
<tr>
<td>Pipeline Sediment Pond - As Built</td>
<td>D5-0163</td>
</tr>
<tr>
<td>Clear Water and Refuse Water Dams</td>
<td>D9-515</td>
</tr>
<tr>
<td>Chidester Dike and Pond Refuse Pile</td>
<td>D9-516</td>
</tr>
<tr>
<td>Profile Existing Ditch</td>
<td>DD-4</td>
</tr>
<tr>
<td>Sections and details of pond & dikes</td>
<td>E9-1764</td>
</tr>
<tr>
<td>Proposed Refuse Dike</td>
<td>E9-2457</td>
</tr>
<tr>
<td>Disturbed Areas</td>
<td>E9-3333</td>
</tr>
<tr>
<td>Surface Ownership</td>
<td>E9-3341A</td>
</tr>
<tr>
<td>Permit Area and Facilities Map (Including Dist. Areas)</td>
<td>E9-3341</td>
</tr>
<tr>
<td>Restoration of Affected Area (2 Maps)</td>
<td>E9-3342 (1,2)</td>
</tr>
<tr>
<td>Property Power Lines</td>
<td>E9-3342 (3)</td>
</tr>
<tr>
<td>Current Land Use Map</td>
<td>E9-3343 (1)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Wellington Loadout Operations Plan (Fig. 2)</td>
<td>E9-3343 (2)</td>
</tr>
<tr>
<td>Refuse Ponds Modification - Permanent Diversion Ditch</td>
<td>E9-3427</td>
</tr>
<tr>
<td>Drill Hole Correlations (4 maps)</td>
<td>E9-3428</td>
</tr>
<tr>
<td>Structure Within 100 ft of the Price River</td>
<td>E9-3430</td>
</tr>
<tr>
<td>Refuse Pond Modifications</td>
<td>E9-3435</td>
</tr>
<tr>
<td>Vegetational Study Map - C</td>
<td>E9-3443</td>
</tr>
<tr>
<td>Hydrologic Monitoring Map</td>
<td>E9-3451</td>
</tr>
<tr>
<td>Road Pond As Constructed and Dryer Pond (x.s.)</td>
<td>E9-3453</td>
</tr>
<tr>
<td>Lower Refuse Dike As Constructed</td>
<td>E9-3460</td>
</tr>
<tr>
<td>Hydrologic Evaluation Map</td>
<td>F9-177 (Rev.) (2 maps)</td>
</tr>
<tr>
<td>Vegetative Study Map</td>
<td>F9-178,179</td>
</tr>
<tr>
<td>Plan, Cross Section, Profile of UD-1</td>
<td>G9-3501</td>
</tr>
<tr>
<td>As-Built Drawing - UD-1A Ditch</td>
<td>G9-3502</td>
</tr>
<tr>
<td>As-Built Drawing - UD-1A Ditch</td>
<td>G9-3503</td>
</tr>
<tr>
<td>Watershed Areas</td>
<td>G9-3504 (Rev.)</td>
</tr>
<tr>
<td>Siaperas Ditch Cross sections</td>
<td>G9-3505</td>
</tr>
<tr>
<td>Proposed Test Plot</td>
<td>Irrigation System</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Water Rights Search</td>
<td>Three Mile Search</td>
</tr>
<tr>
<td>Perimeter</td>
<td></td>
</tr>
<tr>
<td>Plan, Profile,</td>
<td></td>
</tr>
<tr>
<td>Cross-section of</td>
<td></td>
</tr>
<tr>
<td>DD-4</td>
<td></td>
</tr>
<tr>
<td>Updated S.C.S.</td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td></td>
</tr>
<tr>
<td>Potential top soil</td>
<td></td>
</tr>
<tr>
<td>borrow areas</td>
<td></td>
</tr>
<tr>
<td>Property Location</td>
<td></td>
</tr>
<tr>
<td>Map</td>
<td></td>
</tr>
<tr>
<td>As-Built Coal</td>
<td></td>
</tr>
<tr>
<td>Screening and</td>
<td></td>
</tr>
<tr>
<td>Loading Facility</td>
<td></td>
</tr>
<tr>
<td>As-Built Class I</td>
<td></td>
</tr>
<tr>
<td>Haul Road</td>
<td></td>
</tr>
<tr>
<td>General Facility</td>
<td></td>
</tr>
<tr>
<td>View & Soil Sample</td>
<td></td>
</tr>
<tr>
<td>Locations</td>
<td></td>
</tr>
<tr>
<td>As-Built Load Out</td>
<td></td>
</tr>
<tr>
<td>Sedimentation Pond</td>
<td></td>
</tr>
<tr>
<td>As-Built Disturbed</td>
<td></td>
</tr>
<tr>
<td>Area and Hydrology</td>
<td></td>
</tr>
<tr>
<td>As-Built Drawing</td>
<td></td>
</tr>
<tr>
<td>UD-1A Ditch</td>
<td></td>
</tr>
<tr>
<td>As-Built Drawings</td>
<td></td>
</tr>
<tr>
<td>UD-1A Ditch</td>
<td></td>
</tr>
<tr>
<td>As-Built Drawing</td>
<td></td>
</tr>
<tr>
<td>and Volume</td>
<td></td>
</tr>
<tr>
<td>Calculation For</td>
<td></td>
</tr>
<tr>
<td>Topsoil Stockpile</td>
<td></td>
</tr>
<tr>
<td>Number One</td>
<td></td>
</tr>
<tr>
<td>As-Built Drawing</td>
<td></td>
</tr>
<tr>
<td>and Volume</td>
<td></td>
</tr>
<tr>
<td>Calculation For</td>
<td></td>
</tr>
<tr>
<td>Topsoil Stockpile</td>
<td></td>
</tr>
<tr>
<td>Number Two</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Number</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>As-Built Drawing and Volume Calculation For Topsoil Stockpile Number Three</td>
<td>4067-6-20</td>
</tr>
<tr>
<td>Plant Refuse Pile Cross Sections</td>
<td>77.215-2(7)</td>
</tr>
<tr>
<td>Plant Refuse Pile-Final Reclamation</td>
<td>536a</td>
</tr>
<tr>
<td>Plant Refuse Pile Sections</td>
<td>536b</td>
</tr>
<tr>
<td>Alluvial Isopach Map</td>
<td>612a</td>
</tr>
<tr>
<td>Refuse Basin (As-Built)</td>
<td>712a</td>
</tr>
<tr>
<td>Clearwater Pond (As-Built)</td>
<td>712b</td>
</tr>
<tr>
<td>Pipeline Slurry Pond (As-Built)</td>
<td>712c</td>
</tr>
<tr>
<td>Auxiliary Pond, Road Pond and Dryer Pond (As-Built)</td>
<td>712d</td>
</tr>
<tr>
<td>Dryer Sediment Pond (Expansion Designs)</td>
<td>712e</td>
</tr>
<tr>
<td>Dryer Sediment Pond Sections</td>
<td>712f</td>
</tr>
<tr>
<td>Dryer Sediment Pond (Design Structures)</td>
<td>712g</td>
</tr>
<tr>
<td>Dryer Sediment Pond (Design Outlet Structure)</td>
<td>712h</td>
</tr>
<tr>
<td>Wellington Coal Preparation Plan Sections</td>
<td>712i</td>
</tr>
</tbody>
</table>
5.12 CERTIFICATION (R645-301-512)

Surface Facilities

Surface facilities and operations of the Wellington Preparation Plant are shown on Drawing Numbers 712a, T1-9597, E9-3341, 4067-6-8B, E9-3342 and E9-3343 in the Appendices. The maps and drawings show the following:

- All buildings within 1000 feet of the permit area.
- Current use of facility as discussed R645-301-526.
- The location of surface and subsurface man-made features within, passing through or over the permit (railroad system, natural gas pipeline, and transmission line).
- Each public road located in or within 100 feet of the permit area.
- The location and size of existing areas of coal waste and noncoal waste disposal, dams, embankments, other impoundments and water treatment facilities within the permit area.
- The location of sedimentation ponds and coal processing waste dams and embankments.
- The location of a modular coal fines wash plant, truck loadout, slurry tank, NW tailings impoundment, retention berm, and power lines and water and tailings pipelines.
- The area of land affected within the permit area (no further disturbance is anticipated at this time).
- The area of land for which a performance bond is posted in the disturbed area (E9-3333).
- Coal storage and loading (occurs in the South Site area shown on Dwg. 4067-6-8B).
- Topsoil, coal preparation waste and noncoal waste storage area (Dwg. E9-3341 and 4067-6-8B).
Temporary Cessation of Operations

Much of this section of the State Rules appears to be intended for commitments to report emergencies for operations associated with underground and surface mining. No underground or surface mining is presently occurring or has occurred in the past at the Wellington Plant. The current status of the temporary decrease in activities and operations at Wellington has been well-documented in other areas of the MRP (e.g. Sec. 1.00, Sec. 5.21, Sec. 5.26) including many submittals and other correspondence to DOGM.

As an approved procedure, the area has been properly secured as a result of the current status of activities at the Wellington Plant. The operator effectively supports and maintains all surface access openings to the area, and has secured surface facilities in areas in which there are no current operations (where operations are expected to be resumed under an approved permit).

It is acknowledged that temporary cessation of operations does not relieve the operator from obligation to comply with any provisions of the approved permit.
To summarize, and to serve as a "temporary cessation notice" to DOGM, cessation of the activities at Wellington began on the west side of the Price River in 1999 following dismantling, demolition, salvage and grading activities in the area. The following structures were dismantled, demolished, disposed and/or salvaged at that time.

- Main Plant Building
- Track Hopper and Raw Coal Conveyor
- Heat Dryer Building and Conveyor
- Refuse Pipeline (in part)
- Office Building
- Storehouse
- Shop
- Coal Carbonization Lab
- Plant Pumphouse
- Sand Hopper
- Substation
- Pavement
- Asbestos

The following areas were graded on the west side of the property following the activities described above. The total area graded was 45.0 acres.

- Surface Facilities Area (in areas of the above structures)
- Coal Storage Area

Covol and their associated operators (TechMat and General Resources) ceased their wash plant activities on the east side of the Price River in 2003. Following cessation of these activities reclamation of this area began in 2004. The
reclamation activities included dismantling, demolition, salvage, grading, gouging, fertilizing and seeding activities. The structures were dismantled and removed from the Covol Wash Plant site.

- Wash Plant
- Concrete Floor Slabs
- Foundations
- Column Floatation Cells
- Conveyor Belts
- Office, Stores and Trailers
- Diesel Fuel Tank & Containment
- Water and Tailing Pipelines
- Pumphouse

The following areas were graded, gouged, fertilized and seeding follow removal of the above structures.

- Wash Plant Site (3.09 acres)
- River Pumphouse Site (0.72 acres)

When new operations at Wellington begin, if temporary cessation of these operations occur for a period of 30 days or more, the operator will submit to DOGM a notice of intention to cease or abandon operations. This notice will include a statement of the exact number of acres which will have been affected in the permit area prior to such temporary cessation. The notice will also include, if applicable, the extent and kind of reclamation of
those areas which will have been accomplished, and identification of the backfilling, regrading, revegetation, environmental monitoring, and water treatment activities that may continue during the temporary cessation.
Response:

10. As requested in a letter from the Division (from D. Haddock, dated September 17, 1996) a few outstanding issues carry their own schedule. This issue is one of them. It was addressed in a letter on behalf of NEICO to J. Helfrich of the Division (from D. Dragoo, dated October 15, 1996).

Deficiency:

11. **R645-301-527**, provide a detailed description of each road constructed used or maintained in the permit area. (Without retaining the existing "as-built" description of the haul road the applicant has not supplied the required road surfacing information, additional information for the road access to the sluiceway and dam from the railroad spur and the roads at the north west end of the permit area should be clarified. The plan does not discuss how other roads meet the requirement of ancillary roads. The road adjacent to the slurry operations is proposed to be retained as a permanent road. It is used frequently (required for weekly MSHA inspection) and is used for more than a 6 month duration. Road surfacing should be adequate to provide access during the required inspection periods.

Response:

11. Sec. 5.27, pp. 1-5, 10/23/96 of this submittal replaces Sec. 5.27, pp. 1-5, 1/27/91 of the current MRP.

Deficiency:

12. **R645-301-533.252**, supply the needed amount of borrow material to meet the minimum regulatory requirement of 4 feet of the best available, nontoxic and noncombustible material.

Response:

12. Sec. 2.41, pp. 4-8, 10/23/96 of this submittal replaces Sec. 2.41, pp. 4-10, (6/30/95 & 10/13/95) of the existing MRP.

Dwg. G9-3511, certified 10/96 of this submittal replaces Dwg. G9-3511, certified 6/95 of the existing MRP.
5.13 COMPLIANCE WITH MSHA REGULATION AND MSHA APPROVALS
(R614-301-513)

513.100

Coal processing waste dams and embankments have been designed to comply with MSHA regulations.

513.200

U.S. Steel Company constructed the site and used it as a coal preparation plant from 1958 to 1985. Impoundments and refuse piles were constructed by U.S. Steel Company beginning in 1958 and have been designed to meet MSHA regulations. The following ponds and piles were constructed by USS and have received MSHA identification numbers:

<table>
<thead>
<tr>
<th>Plant</th>
<th>Refuse Pile I.D. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Water Pond</td>
<td>1211-UT-9-0010</td>
</tr>
<tr>
<td>Lower Refuse</td>
<td>1211-UT-9-0011</td>
</tr>
<tr>
<td>Upper Refuse</td>
<td>1211-UT-9-0012</td>
</tr>
<tr>
<td>Lower Refuse</td>
<td>1211-UT-9-0013</td>
</tr>
<tr>
<td>Upper Refuse</td>
<td>1211-UT-9-0014</td>
</tr>
</tbody>
</table>

As-built drawings, plans and other information was gathered from old USS files for the above refuse piles and sediment ponds. This information has been added to the MRP in the Hydrology Appendix, Volume II. A visual inspection of the Clearwater Dam and Lower Refuse Dike was performed November 12, 1997, by RB&G Engineering. The dams were determined to be stable and would perform satisfactorily under reservoir full conditions (see Appendix CR). The Division of Water Rights - Dam Safety Section deemed the dams adequate for operation (see Appendix DS). The Department of Environmental Quality determined that Construction and Discharge Permits would not be required (see Appendix WQ).

MSHA accepted and filed the Ground Control Plan which addressed drainage and water diversion issues on September 26, 1997. A copy of the plan is included in Appendix GC.

A new area in the northwest corner of the Upper Refuse Basin will be constructed to contain the initial tailings from the coal refuse washing operation. The design of the berm used to detain the tailings is contained in Appendix NW.

Inspections of active impoundments and refuse piles have been done quarterly by a registered professional engineer and certified to comply with MSHA. Results of the quarterly inspections have been submitted to the Division and included in annual reports.

513.300

Underground development waste, coal processing waste and excess spoil will not be disposed of in underground mine workings.
Refuse piles have been designed to meet MSHA regulations. Inspections of refuse piles are done quarterly by a registered professional engineer and certified to comply with MSHA. Results of the quarterly inspections will be submitted to the Division, included in the annual report.

Shafts, drift, tunnels, adits, exploratory holes, entryways, and other activities associated with underground mining are not applicable at the Wellington site.

Discharges in underground mines are not applicable for the Wellington site.

Underground mining activities are not applicable at the Wellington site.
Coal and coal waste fires have not been a problem to date at the Wellington facility. A fire fighting, control, and evacuation plan has been written for the plant and is included in Appendix K. The plan includes fire protection and control of coal waste and coal storage piles.
5.14 INSPECTION (R645-301-514)

All applicable engineering inspections will be conducted by a qualified registered professional engineer or other qualified professional specialist under the direction of the professional engineer. Inspections will be conducted quarterly by a qualified person designated by the operator. Quarterly inspections will review the structure for structural weakness and other hazardous conditions as required by R645-301-514.330. Each year a certified report will be submitted to the Regulatory agency as required by R645-301-312. The yearly report will include:

- A discussion of any appearances of instability, structural weakness or other hazardous conditions.
- The depth and elevation of any impounded waters.
- Existing storage capacity
- Existing or required monitoring procedures and instrumentation.
- Any other aspects of the structure affecting stability.

Structures with a volume greater than 20 acre-feet including the Upper and Lower Refuse Ponds and the Clearwater Pond will be inspected weekly as required by MSHA in accordance with 30 CFR 77.216-3. As required by MSHA, the inspections are to include observations regarding any structural weakness and other hazardous conditions. Should any anomalous or hazardous condition be found, the action, notification, and corrective measures defined with 30 CFR 77.126-3 will be followed.

The Plant Refuse Pile is included in the quarterly inspections. Each new lift of waste placement shall be tested for compaction prior to placement of overlying materials and the results of the compaction tests shall be provided to the Division (see Sec. 536.200 for placement and compaction requirements). In addition, prior to placement of any additional materials outside the limits of the existing pile, the foundation will be inspected. The final surface drainage system will be inspected during installation as part of final reclamation.

4/30/96
515. REPORTING AND EMERGENCY PROCEDURES (R645-301-515)

Slide Hazards

Because the permit area for the Wellington Preparation Plant is essentially level, the probability of a slide occurring is very low. However, if at any time a slide occurs which may have a potential adverse effect on public, property, health, safety, or the environment, the owner or operator at the Wellington Preparation Plant will notify the Division of Oil, Gas & Mining (DOGM) by the most prompt available means and comply with any remedial measures required by DOGM.

Impoundment Hazards

If any examination or inspection discloses that a potential hazard exists from impoundments, the owner or operator at the Wellington Plant (or the person that examined the impoundment) will promptly inform DOGM of the finding and of the emergency procedures formulated for public protection and remedial action. If adequate procedures cannot be formulated or implemented, DOGM will be notified immediately.
Temporary Cessation of Operations

A modular coal fines wash plant, truck loadout, slurry tank, NW tailings impoundment and retention berm, power lines and above ground water and tailings pipelines are to be constructed for the coal refuse ponds area. The plan for Surface mining of these ponds is submitted herein.

It is acknowledged that these operations do not relieve the operator from obligation to comply with any provisions of the approved permit.
If temporary cessation of these operations occurs for a period of 30 days or more, the operator will submit to the Division a notice of intention to cease or abandon operations. This notice will include a statement of the exact number of acres which will have been affected in the permit area prior to such temporary cessation. The notice will also include, if applicable, the extent and kind of reclamation of those areas which will have been accomplished, and identification of the backfilling, regrading, revegetation, environmental monitoring, and water treatment activities that may continue during the temporary cessation.
5.20 OPERATION PLAN (R645-301-520)
Operations have varied throughout the years at the Wellington Preparation Plant. A brief history and summary of current proposed operations follows.

Brief History of Operations

From 1958 until 1985, the operation history of the property was that of receiving coal by rail, preparation (coal cleaning) and shipping of a blended product by rail.

Kaiser Coal bought the property in 1985 and later discontinued the coal cleaning operations and filed for bankruptcy. In 1989, Genwal Coal Company/NEICO purchased Wellington property to augment operations at their coal mine. A railroad load-out facility at Wellington was then constructed that consisted of a much simplified flow of product. Coal was crushed at the mine site, transported by truck to the Wellington facility, temporarily stored on the ground, screened, and then loaded into waiting railcars. The actual loading operation was installed by Genwal Coal Company in September and October of 1989 and made operational in November of that same year. The new loading system used only one conveyor belt system of the old Kaiser Coal/U.S. Steel preparation plant.
In 1995, NEICO sold their interest in the Genwal Coal Company and therefore discontinued all transportation of coal to the site from the mine. NEICO continued to maintain the property and since then has explored many possibilities for future activities and operations for the site including selling the property. Proposed plans from potential buyers of the site have included (but have not been limited to) the following: using the coal fines and other reject material as a fuel source, an on-site power generation plant, industrial park facilities, recycling center, coal briquette fabrication facility, and restoration of the coal cleaning facility for other similar processing operations. Furthermore, the Wellington site has been proposed as an industrial area. The area is zoned by the county as "heavy industrial" and current investigations are being conducted to develop it as such.

In 1997 the Permittee, NEICO, designated Earthco as the Operator of the Wellington Preparation Plant site. Earthco began reclamation of the site on the west side of the Price River with plans to change the site to an industrial area. During this operation, all buildings and most structures west of the Price River were demolished and salvaged. The area was also regraded in preparation for development of an industrial site. Later, additional clean-up and grading work, but was conducted in the same area under the direction of NEICO.
During this same time period, the east side of the Price River was leased to another company, Covol Technologies, who constructed a modular coal fines wash plant in that portion of the permit area. A truck load-out, slurry tank, NW tailings impoundment, retention berm, power lines, above ground water lines and tailings pipelines were constructed in order to recycle the coal refuse from the adjacent slurry ponds area. This use was entirely consistent with all previous permits and activities that had occurred on the site in the past. Site grading, diversions and sediment control measures were directed to control any runoff that may occur into the Lower Refuse Pond or into Alternative Sediment Control Areas (ASCA’s) 4 & 5. The majority of the facilities were located on the previously disturbed Coarse Slurry Pile. A substation was located near the wash plant. The River Pumphouse was refurbished to draw water needed for this operation and another pump was installed in a supply well near the pumphouse.

The type of equipment installed to process the coal fines included conveyors, screens, hoppers, flotation columns, centrifuges, pumps, tanks, and cyclones. Construction was done in a phased manner to allow for some production of washed fines to begin while the final additions to the plant were made. The reclamation plans for the plant site on the Coarse Slurry Pile were consistent with the current MRP.
Covol's modular coal fines wash plant was idled for much of 1999. Another company, TechMat, LLC, had signed a lease to resume these activities. TechMat later also discontinued washing fines. The wash plant was dismantled and removed from the site in 2006. The area was then regarded and reclaimed according to the MRP.

Proposed New Operations

In November 2013, Price River Terminal, LLC (PRT), purchased the Wellington Preparation Plant property from NEICO. PRT plans to operate a small section of the property in the northwest corner of the permit area as a "Crude-by-Rail" transloading facility. Watco Companies, LLC, (Watco) is the designated Operator of the transloading facility. Crude oil will be delivered to the site by truck where it will be transferred from trucks to railcars for shipment to various crude oil refineries throughout the United States. Oil will be transferred with the use of three mobile loading racks. Future development of the transloading operations have been conceptualized in four phases. Because these plans are subject to change according to demand and economics, Phases I and II have been described in greater detail at this time. A key map showing these phases and their location on the property is presented below (refer also to Dwg. E9-3341 for transloading site location information).
Initial activities for the transloading operation include the re-grading of the existing access road(s) leading from Ridge Road to the transloading area, placement of a mobile office trailer that will contain a break room and conference room, rehabilitation of the rail tracks, and a minor modification the Auxiliary Pond outlet.

The outlet modification will entail adding an oil skimming device to the Auxiliary Pond, the existing sediment pond that currently receives runoff from the transloading operations area. There will be no change in the runoff control plan for the site as a result of the transloading operation. Any potential spillage from the transloading would normally be captured at the source by the containment and safety devices employed during the transfer process. The controls are described in detail in the Storm Water Pollution Prevention Plan (SWPPP) and the Spill Prevention Control and Countermeasure (SPCC) Plan for the site. In the unlikely event that an oil spill should occur and not be contained at the source, it would be captured in the Auxiliary Pond located southeast of the operation, just as drainage from the area is presently caught. The Auxiliary Pond will therefore act as the final containment and protection against any major oil spills. It should be noted that the Division of Water Quality (DWQ) requested that an oil skimmer be added to any sediment ponds receiving runoff from the transloading operation; therefore, the outlet of the Auxiliary Pond will be slightly modified to meet that requirement. This will be accomplished using the existing outlet box, with no changes in size or capacity. The box is presently open on top and closed on the
bottom. The modification will reverse the water flow into the box by closing off the top and opening the bottom, which is located below the outlet culvert. Any overflow water will then have to enter the box from the bottom, forcing oil to remain on the surface above the inlet. The overflow water will then go to the Dryer Pond. Details on this modification are shown on Dwg. 712j. The latest annual inspection on the Auxiliary Pond shows it to be more than adequate to contain the runoff from 10 year – 24 hour storm event plus at least 2 tank cars at approximately 28,500 gallons each.

Existing Surface Facilities

Additional information about the facilities and structures of the Wellington Coal Cleaning Plant can be found in Section 5.26 of this document. For a map showing the location of the previous load-out pad, refer to Dwg. 4067-6-8A. As historical information, Exhibits 1 through 6 (Sec. 5.26) show photographs of previous (now reclaimed) Wellington Plant facilities. For a map showing the previous locations of these structures and facilities, refer to Dwg. E9-3341. Included on these drawings are the following:

All buildings within 1000 feet of the permit area. Current use of the facilities is discussed in section 5.26.
The location of surface and subsurface man-made features within, passing through, or over the permit area - including the plant rail system and the natural gas pipeline.

Each public road located in or within 100 feet of the permit area.

The location and size of existing areas of coal waste and noncoal waste disposal, dams, embankments, other impoundments and water treatment facilities within the permit area. No spoil or coal development waste is stored.

The location of sedimentation ponds and coal processing waste dams and embankments. No permanent water impoundments are proposed.

The previous locations of a modular coal fines wash plant, truck loadout, slurry tank, NW tailings impoundment and retention berm, power lines and above ground water and tailings lines are shown on Drawing 712a and Figure 5.12-1.
Landowners and Right of Entry

PRT will grant Watco the right of entry. The boundaries of land within the permit area upon which the operator has legal right to enter and begin operations are shown on Dwg. 4067-6-1A.

The permit area is within 100 feet of a public road (see Dwg. 4067-6-8B). The Wellington Preparation Plant has occupied the permit area since 1958. Therefore valid existing rights can be claimed. In 1989 Carbon County built a new public road (called the "Ridge Road") across the permit area with Genral Coal Company's permission. Although it is a county road, the State maintains it as stated in a letter from State of Utah, Dept. of Transportation (UDOT). A copy of the letter is shown in Appendix G.

Land Surface Configuration Maps

The facility area is fairly flat. There are no coal outcrops, previously mined areas, or steep cut slopes in the permit or disturbed areas. Dwg. E9-3341 shows surface contours.

The area of land for which a performance bond is posted is the disturbed area as shown on Dwg. E9-3333.
The previous coal storage and loadout area are shown on Dwg. 4067-6-8B.

Topsoil, coal preparation waste and areas are shown on Dwg. E9-3341 and 4067-6-8B.

Coal refuse (slurry) and coarse refuse disposal areas, generated by past operations are shown on drawing E9-3341.

No explosives are stored on site.

Coal processing waste banks, dams and embankments are shown on Dwg. E9-3341.

Transportation Facilities Maps

The coal haul road ("new access road") is shown on Dwg. 4067-6-9A (Rev), including a profile and specifications. Cross-sections of ancillary roads are shown on Dwg. C9-1286 and A9-1432.

Existing facilities (bridges, ponds, rail system, refuse piles, etc.) are shown on Dwg. E9-3341. Facilities that have been reclaimed are also listed, but not shown, on the drawing.
A rail system dissects the Wellington site. The Wellington Preparation Plant has access to the system to load rail. Pertinent portions of the railroad system are shown on Dwg. E9-3342 (1 of 2).

Support Facilities

The majority of the present Wellington Plant facilities were constructed in 1957-58 by operators other than NEICO. A few structures remain from past coal preparation operations at this time.

Described in Sec. 5.26 are the remaining existing structures on the Wellington site. For maps and drawings showing these structures and facilities, refer to: Dwgs. E9-3341, E9-3427, 4067-6-8A, 4067-6-8B, 4067-6-21 and Exhibits 1-6 (Sec. 5.26).

With the more recent construction of the screening plant (1989), some equipment was moved to the site, while other existing equipment was utilized. For a map showing the location of the load-out pad, refer to Dwg. 4067-6-8A. Exhibits 1 through 6 (Sec. 5.26) show photographs of the existing Wellington Plant facilities. Exhibit 6 shows the small screening plant that was moved to the Wellington site for the load-out operations.
The coal sampling and load-out conveyor system that was previously in existence was utilized in conjunction with the load-out facility. No modification or alteration of these facilities was required other than simple installation of a feed chute for transfer of the product into the system. It was proposed to not develop an engineered drawing for this slight alteration, but rather to construct on a field-fit basis. Construction consisted of removing several outer wall panels from the plant side, installing a conveyor through the opening, and fabricating a small plate transfer enclosure at the transfer point to the existing conveyor.

As previously noted, the majority of the support facilities described has now been removed, as shown on Dwg. E9-3341.

Signs and Markers

Pertinent signs and markers have been posted and are maintained on the Wellington Preparation Plant site. Access areas to the property from public roads where surface operations and facilities are located have identification signs. These signs show the company name, business address, and telephone number of the permittee.
Perimeter areas are regularly marked by green t-posts and painted white at the top 24 inches around the entire area that is affected by surface operations and facilities.

Buffer signs are posted and clearly marked 100 ft from the Price River to alert the operations personnel of the proper distance required by the Division as to not affect water quality.

Topsoil stockpiles are also clearly marked on the property including an identification number.

Other signs and markers pertinent to operation for visitors and employees have also been posted.
Refuse material (fines) was deposited on the Wellington site by previous owners who conducted coal cleaning activities. The current plan describes the slurry ponds to be reclaimed by burial with coarse refuse, followed by covering with topsoil, then revegetation. A modular coal fines wash plant was once used on the west bank of the Lower Slurry Pond when some of the fines were removed by Covol and later, Techmat. These operators were granted authorization by the State of Utah, Division of Oil, Gas & Mining (DOGM) to conduct a pilot study to remove coal slurry fines from the pond areas at the Wellington site. Primary purpose of these operations was to compare methodologies and costs for fines removal for reclamation and/or marketability.

Sunnyside Cogeneration has a contract with Price River Terminal (PRT) to remove coal refuse fines from the slurry ponds at the Wellington site. Removal of the fines will enable them to be used at a cogeneration power plant as well as being instrumental for initiation of final reclamation for that area of the Wellington site.
5.23 METHODS FOR REMOVING SLURRY FINES FOR RECLAMATION (R645-301-523)

Most of the refuse (slurry) fines are located within the existing slurry pond basins, with the possible exception of a lesser amount on the west side of the upper basin where they appear to have been placed as a means to increase the volume of the basin back when U.S. Steel Corp. operated the site as a coal cleaning facility. The Slurry Ponds are large, relatively old basins that contain a substantial amount of coal refuse from the past coal cleaning operations. The Lower Slurry Pond is separated from the Clearwater Pond on the southwest by a constructed dike. The upper and lower Slurry Ponds are also separated by a dike between them.

Historically, when the site was used for coal cleaning operations by U.S Steel, refuse was brought from the coal cleaning plant to the east side of the Price River by a pipeline in a slurry mixture. The coarser slurry material was first deposited in an area called the Coarse Slurry Pile. Next, the slurry mixture continued on to the Upper Slurry Pond where finer textured material was deposited and allowed to settle. The slurry mixture then moved on to the Lower Slurry Pond where more fines were once again allowed to settle. Ultimately, water from the refuse slurry mixture ended up in the Clearwater Pond where the "clean" water was recycled and pumped back to the west side of the Price River for use in the coal cleaning plant.
As described in Section 2.41, in the "best-case" scenario for reclamation, the fines would be removed from the slurry ponds prior to revegetation activities at the Wellington site.

Sunnyside Cogeneration Plant, located near the town of Sunnyside in Carbon County, Utah, has a contract with PRT to remove the fines from the Upper and Lower Slurry Ponds as well as the fines that were removed and placed adjacent to the Upper Slurry Pond. Sunnyside Cogen has contracted Savage Services to conduct the excavation activities and transportation of the fines to their plant site.

Activities will include excavation and haulage of coal refuse waste. It is expected that the annual, monthly, and daily mined quantities will vary, but the onsite fines removal activities will have a production rate of less than 1,000,000 tons per year. Records will be maintained to account for the amount of refuse removed and transported.

Mining methods will use a standard mobile fleet of excavation equipment that may include all or some of the following: dozers, front-end loaders, end-dump trucks, belly dump haul trucks, scrapers, track-hoes, and support equipment (water truck, maintenance vehicles). Excavation will be carried out in lifts (following MSHA regulations) across the top of the refuse pile and slurry ponds or by pushing material from the top of the refuse pile down the slopes and pushing material across the slurry ponds. These
methods have been selected to assure continued stability of the refuse pile and slurry ponds. One or more or a combination of the above described mining methods may be used throughout the life of this operation, and at all times the outer slopes of the refuse pile will be maintained in a safe and stable condition.

If the fines are too wet to haul when first excavated, they will be temporarily set aside in piles where they will be allowed to dry out somewhat. These low piles will be placed in the same area (footprint) as the mining operations. No crushing or screening operations will take place at the Wellington site. No surface blasting has been planned.

Drilling refuse test holes have been conducted to assist in obtaining the necessary coal quality information and to determine how the slurry removal process will proceed. No additional sampling to evaluate coal quality is needed at the Wellington site at this time. However, sampling will be conducted to assess toxicities related to final reclamation in the slurry pond area (see “Slurry Pond Material Sampling” below).

Existing pads, primary roads, ancillary roads, and pit roads will be utilized. Additional roads may be desired from time to time. Additional design and sediment control facilities for these roads if needed will be provided prior to construction of new roads.
Periodic watering of gravel and dirt roads for dust suppression will be conducted. Periodic grading of gravel and dirt roads to eliminate mud holes and maintain drainage will also be done.

The methods and locations for the fines removal at the site will be refined once the process begins and the conditions encountered onsite are better known. A figure showing the location of the operations and the direction in which the process will continue for the Phase I is provided below.

Slurry Pond Material Sampling

"Soil" (fines) sampling will be conducted in the slurry pond area on a regular basis to determine the chemical characteristics of the material remaining following extraction of the fines. An outline of the sampling methods and parameters to be analyzed follows.

- Sampling will be conducted every 5 years beginning in 2016.
- At each location, a composite sample will be taken from the ground surface to 4 ft in depth and will be analyzed at a soils laboratory.
- One composite sample will be taken at a frequency of every 3-5 acres. If the 5-year period mined area is 10 acres or less, a sample will be taken every 3 acres; if the mined area is more than 10 acres, a sample will be taken every 5 acres.
- The composite samples will be taken once and limited to areas where fines have been removed (mined). Additional samples will not be taken in the mined areas unless more fines were removed since the last samples were taken.
- Samples will not be taken in un-mined areas or if the re-mining (reclamation) operations cease.
- A final sample period will also be conducted in the entire slurry pond area once the fines removal activities have been terminated and before final reclamation of the site.
Sample laboratory parameters and protocols will follow Tables 3 (Analytical Methods for Baseline Soil Characterization) and Table 7 (Additional Analyses Required of Substitute Topsoil, Overburden, Spoil and Coal Mine Waste) from the STATE OF UTAH, DIVISION OF OIL, GAS & MINING, Guidelines for Management of Topsoil and Overburden (2008). The applicable tables have been included below.

Results of laboratory analyses, sampling methods and a diagram of the sample locations will be provided to the Division in Wellington Prep Plant's Annual Report for that sample year.
Analytical Methods For Baseline Soil Characterization.

Table 3 in State of Utah, Division of Oil, Gas & Mining, *Guidelines for Management of Topsoil and Overburden* (2008).

<table>
<thead>
<tr>
<th>Test to be Performed</th>
<th>Reported As</th>
<th>Suggested Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC_e</td>
<td>dS/m @ 25°C (or mmhos/cm)</td>
<td>Ibid. Chapter 14, pp 420 - 422 and pp 427 - 431.</td>
</tr>
<tr>
<td>Soluble Na, K, Mg, Ca</td>
<td>meq/L.</td>
<td>Ibid. Chapters 14 pp 420-422 (saturation extract); Chapter 19 pp 555-557; Chapter 20 pp 586-590 (spectroscopic methods).</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>%</td>
<td>Western States Laboratory Proficiency Testing Program Soil and Plant Analytical Methods. 1998. v 4.10. p 86. (Loss on Ignition, convert %LOI to OM by regression intercept value as noted in method)</td>
</tr>
<tr>
<td>CaCO_3 %</td>
<td>%</td>
<td>Ibid. p. 99 (Soil Carbonates, Gravimetric Determination after extraction with 3 M HCl.) Total Inorganic Carbon = %CaCO3 x 0.12.</td>
</tr>
<tr>
<td>Extractable Potassium</td>
<td>meq/100 g^-1</td>
<td>Western States Laboratory Proficiency Testing Program Soil and Plant Analytical Methods. 1998. v 4.10. p 73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETERS*</th>
<th>Reported As</th>
<th>RECOMMENDED METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Potential</td>
<td>% pyritic S</td>
<td>U.S. EPA, 1978, EPA 600/278-054. Method 3.2.6, pg 60</td>
</tr>
</tbody>
</table>

Table 3 parameters of pH, EC, and soluble Na, K, Mg, Ca are also required to determine potential salinity and sodicity.
5.24 BLASTING AND EXPLOSIVES (R614-301-524)

No blasting or explosives are used in the present operations plan at the Wellington Preparation Plant. If blasting is required in the future, a plan will be submitted to the Division with standards that are in compliance to R614-301-524 and other pertinent Division regulations.
525. **Subsidence (R645-301-525)**

The requirements of R645-301-525 pertain to permit applications for **UNDERGROUND COAL MINING AND RECLAMATION ACTIVITIES**.

There has been no underground mining activities on the Wellington site and none is anticipated in the future. Accordingly, no subsidence will occur of the site as a consequence of underground mining.
Introduction

The Wellington Preparation Plant is located in Carbon County, Utah on portions of Sections 8, 9, 10, 15, 16 and 17, Township 15S, Range 11E, SLBM. The Plant was originally established in 1958 by United States Steel Corporation as a coal-cleaning, preparation and loading facility. The plant was in continuous operation until 1985 and was subsequently sold to Kaiser Coal Corporation in 1986. After the latter declared bankruptcy, the plant was purchased through the court by Genwal Coal Company, a wholly owned subsidiary of Nevada Electric Investment Company (NEICO), in August 1989. The operator for Genwal was Castle Valley Resources (CVR) and later, NEICO.

Pursuant to a Joint Ownership & Operation Agreement dated as of July 1, 1991, and executed as of July 11, 1991, Intermountain Power Agency (IPA) and NEICO now jointly own certain coal and loadout properties including portions of the Wellington Preparation Plant's permit area. By a Coal Sales and Loading Services Agreement dated July 1, 1991 and executed July 11, 1991, CVR agreed with IPA and NEICO to operate and maintain loadout properties including the Wellington Preparation Plant.

Elevation at the Wellington Plant is approximately 5,300 - 5,500 feet above sea level, with mean annual precipitation of six to eight inches. The site lies primarily on gently rolling slopes of Mancos Shale and valleys of alluvial deposits and is characterized by salt desert shrub vegetation communities. The Denver and Rio Grande Western Railroad passes through the site and the Price River also dissects the property.
NEICO sold its interest in Genwal Coal Company and dissolved Castle Valley Resources. NEICO is the current owner and Earthco is the operator of the Wellington Preparation Plant. Covol is a lessee of part of the site and a contractor for the modular wash plant and the fine-refuse mining operation.

Elevation at the Wellington Plant is approximately 5,300 to 5,500 feet above sea level, with mean annual precipitation of six to eight inches. The site lies primarily on gently rolling slopes on Mancos Shale and valleys of alluvial deposits and is characterized by salt desert shrub vegetation communities. The Denver and Rio Grande Western Railroad passes through the site and the Price River also bisects the property. Historic land use of the area has been dominated by grazing of domestic livestock, wildlife habitat, and limited crop production. About 400 acres within the property boundaries have been disturbed by coal cleaning and preparation operations since 1958.

Operations at Wellington

History

From 1958 until 1985, the operation history of the property was that of receiving coal by rail, preparation (coal cleaning) and shipping of a blended product by rail.
Recent Past

When Kaiser Coal and soon afterward Genwal Coal Company/NEICO, purchased the coal cleaning, operation was discontinued. Soon afterward, a railroad load-out facility at Wellington then consisted of a much simplified flow of product. Coal was crushed at the mine site, transported by truck to the Wellington facility, temporarily stored on the ground, screened, and then loaded into waiting railcars. The actual loading operation was part of a new system installed by Genwal Coal Company in September and October of 1989 and made operational in November 1989. The new loading system used only one conveyor belt system of the old Kaiser/U.S. Steel preparation plant.

More recently, the current owners have sold their interest in Genwal Coal Company. Hence, NEICO is maintaining the existing mothballed plant during this period of evaluation.

At present all transportation of coal from the mine and screening has been discontinued.

Present

A modular coal fines wash plant, truck loadout, slurry tank, NW tailings impoundment and retention berm, power lines, and above ground water and tailings pipelines are to be constructed to process the upper and lower coal refuse ponds. A pump will be installed in a supply well near the river pumphouse.
Exhibit 6 shows the small screening plant that was moved to the Wellington site for the load-out operations.

The coal sampling and load-out conveyor system that was previously in existence is utilized in conjunction with the load-out facility. No modification or alteration of these facilities.

The majority of the present Wellington Plant facilities, however, were constructed in 1957-58. Several other structures remain from past coal preparation operations, some of which are presently being used, while others are idle at this time. Described below are the remaining existing structures on the Wellington site. For a map showing these structures and facilities, refer to Dwg. E9-3341.

A. Bridge

Past Use - This bridge is a concrete structure over the Price River. It was the main entrance area to the site in past.

Present Use - The bridge is primarily used by local farmers to access the croplands.

B. Electric Power Substation

Past Use - The electric power substation receives the incoming power at the
transmission voltage and transforms it to the plant for use in the plant.

Present Use - Disconnected and will be removed.

C. Coal Cleaning Plant Building
Past Use - The coal cleaning plant building is a concrete and corrugated steel structure that contains equipment that was used for processing raw coal into clean coal and refuse components.

Present Use - This structure has been demolished and removed.

D. Track Hopper and Raw Coal Conveyor
Past Use - This is a structural steel building with corrugated steel siding which sits on a reinforced concrete underground structure. Three tracks of the plant railroad system pass through this building. The railroad cars containing the incoming raw coal were dumped in this building into the raw coal bins. The raw coal passed from the raw bins through feeders for blending and placing of the raw coal conveyor for transfer to the coal cleaning plant building.

Present Use - The structure is not used for present operations. The structure has been inspected and is acceptable for reuse. This structure will not be removed.

E. Plant Railroad System
Past Use - The rail system was used to load coal from the coal load-out facility.

Present Use - The rail system has been inspected, and will be used in the future to support future Industrial uses of the railroad frontage.
F. Heat Dryer and Conveyor Past Use - The heat dryer is a plant that received wet, clean coal from the coal cleaning process, reduced the moisture to a nominal 5.5% and returned the dry coal to the loading bins in the coal cleaning plant.

Present Use - This structure has been demolished and removed.

G. Slurry Pipeline and Support Structure

Past Use - The refuse from the coal cleaning process was pumped to the refuse disposal area through an elevated 12 inch steel pipeline supported by steel structures on concrete piers.

Present Use - The structure has been partially removed. The remaining structure is to be used to support cross-land conveyors for the transportation of materials from the west side of the rail spur to the refuse basin. Materials will include, but are not limited to, cover soil for final reclamation and coal refuse for cleaning and separating.

H. River Pumphouse

Past Use - The pumphouse is a steel structure with corrugated steel siding that housed the pumps that pumped water from the sump fed by the Price River to the Clear Water Pond for makeup water which was lost in the heat drying process and to evaporation due to low humidity.

Present Use - The structure is not used for present operations.

I. Coarse Refuse Bin

Present Use - This is a steel structure that accumulated the coarse refuse for
truck to the coarse refuse disposal area.

Present Use - This structure has been demolished and removed.

J. Office Building

Past Use - The office building is a steel structure on a concrete foundation which houses the load-out facility offices.

Present Use - This structure has been demolished and removed.

K. Storehouse

Present Use - The storehouse is a steel frame, steel sided building erected on a concrete slab which housed the spare parts and materials required to maintain and operate the coal cleaning plant.

Present Use - This structure has been demolished and removed.

L. Shop

Present Use - The shop is a steel structure, steel siding building which housed the maintenance shop facilities.

Present Use - This structure has been demolished and removed.

M. Coal Carbonization Lab

Present Use - A steel structure, steel siding building which housed the equipment for testing the cooking quality of the clean coal.

Present Use - This structure has been demolished and removed.
N. Fuel Storage Building

Past Use - This is a steel structure that housed the fuel oil tanks and lubricants.

Present Use - This structure has been demolished and removed.

O. Plant Pumphouse

Past Use - A steel building that housed the fire protection pumps, fresh water pumps and bilge pumps.

Present Use - This structure has been reduced through demolition to the foundation and pipe line end the remaining structure will be used in the future for delivery of water for industrial use.

P. Auxiliary Pond

Past Use - The Auxiliary Pond provided water storage capacity to support coal cleaning plant operations.

Present Use - The pond is used for runoff control of Watershed No. 4.

Q. Haul Road

Past Use - Was constructed recently (see below).

Present Use - Main road into the Wellington Preparation Plant.

R. Upper Refuse Basin

Past Use - Received the water carrying the waste material from the coal cleaning process. Clarification began at this pond.
P. Auxiliary Pond
Past Use-The Auxiliary Pond provided water storage capacity to support coal cleaning plant operations.

Present Use-The pond is used for runoff control of Watershed No.4.

Q. Haul Road
Past Use-Was constructed recently (see below).

Present Use-Main road into the Wellington Preparation Plant.

R. Upper Refuse Basin
Past Use-Received the water carrying the waste material from the coal cleaning process. Clarification began at this pond.

Present Use-The basin is used as a sediment pond to control runoff within the permit area. It will also support dredging operations to recover coal fines from this pond for the modular wash plant. An embankment forms an impoundment in the Northwest corner of this pond for the detention of tailings from the washing operation. The existing drain pipes will be rehabilitated.

S. Upper Refuse Dike
Past Use-The impounding structure that forms the upper refuse pond.

Present Use-The impounding structure that forms the upper refuse pond.

T. Lower Refuse Basin Sediment Pond
Past Use-Received the water from the Upper Refuse Pond. Final water clarification took place in this pond.

Present Use-The basin is used as a sediment pond to control runoff within the permit area. It will also support dredging operations to recover coal fines from this pond for the modular wash plant.

U. Lower Refuse Dike
Past Use-The impounding structure that forms the lower refuse pond.

5.26 9 10/20/97
Present Use - The impounding structure that forms the lower refuse pond basin. The existing drain pipes will be rehabilitated.

V. Clearwater Pond
Past Use - The clear water pond provided storage for the clarified water that was used in coal processing.
Present Use - Will remain to be used for sediment control at final reclamation. A few feet of coal fines have accumulated in the bottom of this pond and will be removed with heavy equipment prior to the introduction of any water. These fines will be stockpiled near the modular wash plant for future processing. Access will be from the northwest side of the pond from an existing road. It will be used to reclaim excess water from the refuse ponds, provide recycle process make-up water to the modular coal washing plant, and although very unlikely, could contain stormwater runoff. Filling the pond from the River Water Collection well and/or the river diversion to the River Pumphouse will begin immediately upon approval by DOGM.

W. Clearwater Dike
Past Use - The impounding structure for the Clear Water Pond.
Present Use - The impounding structure for the Clear Water Pond basin. The existing drain pipes and decant structures will be rehabilitated.

X. Coarse Refuse Pile
Past Use - The Coarse Refuse Pile was the disposal area for coarse reject from the coal cleaning process.
Present Use - The south end of the pile is the location of the construction of the modular coal fines wash plant.

Y. Siaperas Ditch
Past Use - Used for irrigation return flows and to receive natural storm drainage.
Present Use - Used to divert irrigation and storm water away from the upper Refuse Basin.

AA. Clear Water Pipeline
Past Use - A buried line that carried water from the Clear Water Pond to the coal cleaning plant for processing raw coal.
Present Use - The structure is not used for present operations.
BB. Material and Equipment Storage Area

Past Use-Was storage for equipment and various repair, maintenance, and construction materials that were required to support the coal cleaning plant operation.
Present Use-Same use as described above for current operations.

CC. Scrap Metal Storage Area

Past Use-Was used as a holding area for recyclable scrap metal.
Present Use-Storage area.

DD. Wood Storage Area

Past Use-Was used to store wood that was removed from the coal cleaning process.
Present Use-Storage area.

EE. Non-Coal Waste Holding Area

Past Use-Area was used for non-coal waste, then it was hauled to a sanitary landfill.
Present Use-Same as above.

FF. Oil Drum Storage Area

Past Use-Area stored "returnable oil drums" during the coal cleaning operation.
Present Use-Storage area.

GG. River Water Collection Well

Past Use-Was used to pump water from the well, fed by the Price River through the unconsolidated alluvial, into the sump in the pumphouse (H).
Present Use-Will provide make-up water to the dredging operation and modular fine coal cleaning plant.
HH. Road Pond

Past Use - Received plant discharge and runoff volumes. The holding capacity of it will combine with the Auxiliary Pond by a culvert.

Present Use - The pond is used (in part) for runoff control of Watershed No. 4.

II. Pond Fill Pile

Past Use - Material from excavation of the Road, an incised pond.

Present Use - (same as above)

JJ. Heat Dryer Pond

Past Use - Was used as a catch basin for effluent waters from the heat drying process and excess runoff.

Present Use - The pond is used (in part) for runoff control of Watershed No. 4.

KK. Pond Fill Pile

Past Use - Material from excavation of the Heat Dryer Pond, an incised pond.

Present Use - (same as above)

LL. Natural Gas Pipeline

Past Use - Provides natural gas for the facilities.

Present Use - (same as above)

MM. Diversion Ditch (UD-1 & UD-LA)

Past Use - (constructed recently)
NN. Topsoil Borrow Area

Past Use-Areas from which topsoil will be obtained for use in final reclamation.

Present Use-Same as above.

OO. Future Topsoil Stripping Area

Present Use-Pending review.

PP. Pipeline Slurry Sediment Pond

Past Use-This catch basin collects flow from the area adjacent to the Slurry Pipeline on the east side of the Price River

Present Use-Used as sediment control device for the adjacent disturbed area.

QQ. Plant Sediment Pond

Past Use-Was constructed recently.

Present Use-Was constructed in 1989 in conjunction with the present loadout facilities.

RR. Coal fines wash plant and associated facilities.

Past Use-Recently constructed.

Present Use-To recover coal from the refuse contained in the upper and lower refuse ponds. No photograph of this facility is available because the plant has not been built yet.
Building Modifications

Only a few modifications have been made to the existing building at the Wellington Preparation Plant. The coal sampling and load-out conveyor system that was previously in existence is utilized in conjunction with the load-out facility. No modification or alteration of these facilities was required other than simple installation of a feed chute for transfer of the product into the system. It was proposed to not develop an engineered drawing for this slight alteration, but rather to construct on a field-fit basis. Construction consisted of removing several outer wall panels from the plant side, installing a conveyor through the opening, and fabricating a small plate transfer enclosure at the transfer point to the existing conveyor. A crushing system was added to process coal at the site (Exhibit 6).

Some asbestos has been removed from the main building. All other buildings including the offices remain with little or no additional modifications. It has been proposed in the future, however, that the operator will remove the dryer building from the site. Pertinent maps will be updated and a report to DOGM submitted if this is accomplished.

No mining and reclamation activities currently occur within 100 feet of a public road. Furthermore, none are expected in the near future. DOGM will be notified in the event that this status changes.
Some mining, construction and reclamation activities will occur within 100 feet of a public road. The clean coal stockpile, waterlines, and power poles/lines will be within 100 feet of Farnham Road. The public will be prevented access by using fencing and gates. The fencing is approximately 10 feet from the edge of the road. However, the next nearest facility in the loadout area, the conveyor transfer and coal stockpile, is 50 feet from the road.

Before modifying any building the Permittee will update their Mining and Reclamation Plan. The updated MRP will include detailed plans, maps and drawings approved by the DOGM.

Before doing any reclamation work such as demolishing and removing the dryer building the operator will notify DOGM to the time and sequence.

Utility Installation and Support Facilities

All coal mining, construction related to the wash plant and reclamation operations will be conducted in a manner which minimizes damage, destruction, or disruption of services provided by oil, gas, and water wells; oil, gas, and coal-slurry pipelines, railroads; electric and telephone lines; and water and sewage lines which pass over, under, or through the permit area. In addition, electric power to the wash plant will be re-established using the existing corridors by installing poles, wires and appurtenances. The power line to the Clear Water Pond and supply well will parallel Farnham Road on the East side (see Drawing T1-9597). All electric power lines will be built, owned and maintained by PacificCorp. (See Appendix EP). The two waterlines are above ground, 12 inch diameter carbon steel which rest on short timber cradles. Both the overhead power line and the waterlines will be behind the existing fence and within 100 feet of the County road. Their distance varies from 40 to 80 feet from the edge of the road. Where the waterline crosses under the County Road, it will be placed in an existing concrete culvert to prevent having to cut through the road and block traffic.

The support facilities will be operated in accordance with a permit issued by the State of Utah, Division of Oil, Gas & Mining (DOGM). Descriptions and photographs for each support facility.
erosion and siltation, and damage to public or private property, and manner that:

1) prevents or controls erosion and siltation, water pollution, and damage to public or private property, and 2) to the extent possible using the best technology currently available - minimizes damage to fish, wildlife, and related environmental values; and minimizes additional contributions of suspended solids to streamflow or runoff outside the permit area. Any such contributions will not be in excess of limitations of Utah or Federal law.
AFFIDAVIT OF PUBLICATION

STATE OF UTAH) ss.
County of Carbon,)

I, Kevin Ashby, on oath, say that I am the Publisher of the Sun Advocate, a twice-weekly newspaper of general circulation, published at Price, State and County aforesaid, and that a certain notice, a true copy of which is hereto attached, was published in the full issue of such newspaper for 4 (Four) consecutive issues, and that the first publication was on the 9th day of September, 1997 and that the last publication of such notice was in the issue of such newspaper dated the 30th day of September, 1997.

Kevin Ashby - Publisher

Subscribed and sworn to before me this 30th day of September, 1997.

Linda Thayn
Notary Public My commission expires January 10, 1999 Residing at Price, Utah

Publication fee, $139.68
August 29, 1997

City of Wellington
150 West Main Street
Wellington City, Utah 84542

Certified Mail # P 471 931 241

RE: Notice of Postmining Land Use Change and Bond Reduction at the Wellington Preparation Plant.

To Whom It May Concern:

Enclosed you will find copies of the text that has been submitted to the Sun Advocate. These ads will appear in the newspaper on September 2, 4, 9, 11, 16, 18, 23 and 24. Should you want to review the revisions, a copy can be viewed at the County Clerks Office in the Courthouse in Price, Utah.

Sincerely,

Steve Traweek
Sr. Project Manager / Resident Agent - Wellington Preparation Plant

Enclosures
August 29, 1997

School and Institutional Trust Lands Administration
675 East 500 South
Salt Lake City, Utah 84102

Certified Mail # P 471 931 240

RE: Notice of Postmining Land Use Change and Bond Reduction at the Wellington Preparation Plant.

To Whom It May Concern:

Enclosed you will find copies of the text that has been submitted to the Sun Advocate. These ads will appear in the newspaper on September 2, 4, 9, 11, 16, 18, 23 and 24. Should you want to review the revisions, a copy can be viewed at the County Clerks Office in the Courthouse in Price, Utah.

Sincerely,

EarthCo

Steve Traweek
Sr. Project Manager / Resident Agent - Wellington Preparation Plant

Enclosures
Exhibit 1 Looking Northwest: C-Coal Cleaning Plant Building; C1-Clean Coal Loading Point; C2-Clean Coal Conveyors; D1-Raw Coal Conveyor; F1-Dry Coal Conveyor; F2-Control Building; F4-Scrubber; F5-Wet Coal Bin and Blower Building; F6-Wet Coal Conveyor; G-Refuse Pipeline and Supporting Structure; N-Fuel Storage Building
Exhibit 2
Looking West: C-Coal Cleaning Plant Building; C1-Clean Coal Loading Point; D1-Raw Coal Conveyor; F1-Dry Coal Conveyor; G-Refuse Pipeline and Supporting Structure; I-Coarse Refuse Bin; I1-Coarse Refuse Conveyor; J-Office Building; K-Storehouse; L-Shop; M-Coal Carbonization Lab; O-Plant Pumphouse; P-Auxiliary Pond
Exhibit 3 Looking Northeast: F1-Dry Coal Conveyor; F2-Control Building;
F3-Cyclone Heavy Media Separation; F4-Scrubber; G-Refuse Pipeline
Exhibit 4 Looking Southeast: H-Pumphouse; GG-River Water Collection Well;
W-Clearwater Dike; V-Clearwater Pond; VI-Clear Water Intake Structure
5.27 TRANSPORTATION (R614-301-527)

A general map that shows roads, the rail system, surface facilities and other structures associated with the Wellington Preparation Plant is shown on Dwg. E9-3341.

Roads

Roads were designed to control damage to public or private property, have a static safety factor minimum of 1.3 for all embankments, and to ensure environmental protection and safety appropriate for their planned period of use (including consideration of the type and size of equipment used, the design and reconstruction of roads, appropriate limits for grade, width, surface materials, and other necessary design criteria established by the Division).

Roads have been designed, built and described in previous a submittal to the Division called "Revised Application For Permit Revision and Incidental Boundary Change: Wellington Preparation Plant" (November 1, 1989 submittal). Any departures from as-built designs were described "As-Built Facilities: Genwal's Wellington Coal Load-Out Facility", (December 21, 1989 submittal). Designs and other information are summarized given below.
Primary Roads

The introduction of coal haulage truck transportation facilities to the Wellington site, under the existing permit, mandated the construction of a Class I road for the load-out activities as defined by the Division. The new, 3,700 ft haul road was constructed for the load-out facility. The haul road is shown on Dwg. 4067-6-9A of the Appendix. Ditches run parallel to the road on the uphill side. The location of the ditches are shown in Dwgs. 4067-6-8A, 4067-6-9A (Rev), and 4067-6-10A (Rev). The haulage and access road begins at the coal load-out facility and proceeds generally northwesterly to the west boundary line of the owner's property. The road then connects with a country spur road used to access country borrow pits. This spur road in turn connects to the Carbon County Ridge Road. The haulage road passes over sparse grass and shrub lands as described in the existing Operation and Reclamation Plan of the permit area and does not cross any intermittent or perennial streams. Run-off from seasonal precipitation will be contained and directed as described in the Division rules and the certified design is compatible with criteria for coal truck haulage usage.

Taking advantage of the gently undulating topography, the haulage road was positioned generally on the existing surface after removal and storage of topsoil and base preparation. Blading of a 30 ft. base along the right-of-way dressed and prepared a road base configuration to accommodate coal truck travel parameters.
Simple placement on the existing surface topsoil resulted in vertical maximum pitch of less the 4 percent (see Dwg. 4067-6-9A Rev). These grades are restricted to relatively short distance and the overall grade is approximately 2.0 percent.

The primary roads are located on the most stable available surfaces; are surfaced with rock, crushed gravel, asphalt or other material approved by the Division for anticipated traffic; and are routinely maintained to include repairs to the road surface, blading, filling potholes and adding replacement gravel or asphalt. If damaged by a catastrophic event, i.e. flood or earthquake, the road will be repaired as soon as practical after the damage has occurred.

Nonacid- or nonacid-forming substances were used in road surfacing.

There are no steep cut slopes within the load-out facility area.

For more information on roads of the Wellington facility, refer to Sections 5.12 and 5.34.

The haulage road will be retained throughout the life of the coal load-out facilities. Should retention of the road be desired beyond this time, maintenance and drainage control will be provided. Upon
permanent termination of all operations within this property, reclamation will be in accordance with pertinent Division rules.

Drainage designs for the road are shown on Dwgs. 4067-6-9A (Rev.), 4067-6-10A (Rev.), and 4067-6-21.

Topsoil stockpiles constructed from the road and load-out facility were discussed in Chapter 2, Section 2.31 (231.22 and 231.400). For as-built topsoil stockpile drawings showing contours, heights, cross-sections, and volumes, refer to Dwgs. 4067-6-18, 4067-6-19 and 4067-6-20 and Appendix F.

Ancillary Roads

All roads, other than the haulage road, are unimproved with a top cover of coal cleaning waste when necessary for stability. Cross-sections of other roads on the permit area are shown on Dwgs. A9-1432 and C9-1286.

Rail System

The Wellington rail siding is to be used for loading coal. All track to be used is within the present permit and no changes would be made except realignment of track and replacement of some ties and parts as needed to enable the track to support rail service. The rail system is shown on Dwg. E9-3341.
A new conveyor, approximately 470 feet long, will transport washed coal fines from the modular wash plant to a radial stacker. The radial stacker will then stockpile the coal until it is shipped.

Access from the modular wash plant area to the Northwest pond will be required to construct the Northwest berm and to excavate material from the Northwest pond. This access is provided by moving vehicles over the coal refuse pile and onto the refuse in the pond along the general route of the tailings distribution pipeline. Since this route is within the immediate mining area and is also within the spoil or coal mine waste disposal area it is not considered a "road" by the R645 Rules (see R645-100-200 Definitions).
Primary roads have been designed, constructed and certified by a registered professional engineer. They meet or exceed standards to comply with requirements for stability, drainage, configuration, safety, maintenance, size, grade and other Division requirements (R645-301-534). A certification statement by a registered professional engineer for the haulage road is enclosed (see Appendix G). Roads are also discussed in Sections 5.14 and 5.34.

Pursuant to a maintenance agreement with Carbon County, the Utah Department of Transportation (UDOT) maintains the Class I road ("Ridge Road") to the Wellington site. The county road ("Farnham Road") that runs south from Ridge Road, on the east side of Price River and west of the slurry cells is maintained by the county. These roads are shown on Dwg. E9-3341. Copies of letters from the appropriate agencies confirming maintenance responsibilities including approvals to conduct mining and reclamation activities within 100 ft of these road have been provided in Appendix G. All other ancillary roads are maintained by the operator with equipment leased or maintained on site.

Specification for road widths, road gradients, road surface, road
cut, fill embankment, culvert, etc. have been previously described and referenced in this section and shown on: Dwgs. A9-1432, C9-1286, DD-4, E9-3427, G9-3501, G9-3502, G9-3503, G9-3508, 4067-6-9A, 4067-6-17 (Rev.), and 4067-6-17A.

The transloading facility at Wellington will utilize existing roads, most of which are located outside the current “Disturbed Area”, or those bonded areas that have been designated as such by the Division because of their previous mining and reclamation activities.

Onsite road and rail track maintenance are the first activities planned for the new operations at the Wellington site. With some minor exceptions, the road maintenance will primarily be on those roads outside the current Disturbed Areas. The maintenance planned will include brush removal, re-grading, widening and placement of road base and/or gravel.

If the roads were to be damaged by a catastrophic event, such as a flood or earthquake, the road will be repaired as soon as practical after the damage has occurred.

The track maintenance, however, will be conducted within the above-mentioned Disturbed Areas. This maintenance will essentially be limited to rail tie and ballast reinforcement work. Additionally, to increase efficiency of transloading operations, PRT has planned some relatively minor railroad track expansion. A figure showing the existing track (in red) as well as the proposed expansion (in blue) has been provided below.
To summarize the rail expansion shown in the figure, the new tail track at the west end is approximately 650 ft, the additional loading track parallel to Track 714 is 1,500 ft, and the connection track between Tracks D and H is 500 ft. This expansion represents only an 8.5% increase in trackage owned by PRT. For additional site location information, refer to the Permit Area – Facilities Map (Dwg. E9-3341).
5.28 HANDLING AND DISPOSAL OF COAL, OVERBURDEN, EXCESS SPOIL, AND COAL MINE WASTE (R614-301-528)

528.100 Coal Handling - Present Operations

Coal delivered from the Genwal Mine, in addition to coal purchased from other area mines, is delivered to the load-out facility by contract coal-haul trucking firms. An access road to the load-out facility was constructed utilizing a portion of an existing road. This haul road was completed in 1990 and connects to a borrow pit spur of the new Carbon County highway.

In Phase I, full production of approximately 500,000 TPY of coal is delivered by truck and dumped from the belly of the truck in windrows on the ground as shown in Unit Operations A and B in Fig. E9-3343. The coal is then dozed and picked up by front-end loaders for feeding into the crushing and screening plant. Some coal can bypass the screening plant if it is already appropriately sized. See Dwg. 4067-6-8A and E9-3343.

The coal delivered to the screening plant is separated into as many as four products. The coal larger that 4 inches size may be scalped and conveyed to a chunk coal storage.
Refuse from the upper and lower refuse ponds will be mined by dredging and hydraulically transported to the modular coal fines washing plant where the clean coal product will be recovered. Recovered coal will be transported by conveyor to a radial stacker which will stockpile the coal. Coal will be loaded, by front-end loader, from the stockpile into trucks for transport from the site. The layout of the fine-coal handling operation is shown on Dwg. T1-9597. Tailings from the wash plant will be hydraulically transported to the Northwest pond located in the northwest corner of the upper refuse pond.

528.200 Overburden

Overburden handling is not applicable with the present operations at the Wellington Preparation Plant.

528.300 Spoil and Noncoal Waste

Excess spoil is not applicable with the present operations at the Wellington Preparation Plant. Noncoal waste is temporarily stored then hauled to an appropriate landfill.
Refuse Piles

West of the Price River (Plant Refuse Pile)

During previous coal cleaning plant operations, oversize rock was hauled to a refuse pile near the main building. The rock was placed and compacted with dozer. Slopes are 2h:1v or less and are stable.

East of the Price River (Pond Refuse Pile)

Coarse slurry from the refuse ponds was removed with a Sauerman dragline in 1983 to provide additional pond capacity. The material was compacted in 2 foot lifts with a dozer to form the pond refuse pile. Slopes are 2h:1v or less and are stable. Analysis of the waste material from both refuse piles is contained in Appendix E, p. E-3. It is non-toxic and non-acid forming.

The refuse piles comply with the following requirements:
Temporary Rock & Coal Waste Storage Area

DOGM has approved a Temporary Rock & Coal Waste Storage Area at the Wellington site. This non-hazardous waste material will come from the mine in Crandall Canyon. This is a one time-one exemption and allows a total of 600 cys of this material to be stored on-site.

The material was composed of fractured rock from Genwal's crusher project along with some large boulders and soil obtained from the borrow area. The material has been sampled for nonhazardous substances including pH, EC, texture, soluble Ca, Mg and Na, SAR, tot. S, acid base potential, neutralization potential, B and Se.

The material will be placed on the northeast side of the refuse pile (see Dwg. A9-1470). All runoff from the pile will report to Sediment Pond #1 (Plant Sediment Pond). The temporary storage area will not result in any additional disturbance.

Permanent Storage for Non-hazardous Waste

Additionally, it has been proposed that the Wellington area be the site for permanent storage of non-hazardous waste from clean-out material of the sediment pond from the mine (letter to DOGM from Mt. Nebo Scientific dated 8/2/91). The total amount of this material for the life of the mine was estimated to be 10,000 cys.

The proposed permanent storage area will not result in any additional disturbance. (Before this was approved a second, one-time exemption
was written to deposit some sediment pond clean-out material).

Prior to deposition of any of this material it will be sampled and analyzed for the following substances: pH, EC, texture, soluble Ca, Mg and Na, SAR, tot. S, acid base potential, neutralization potential, B and Se.

Coal Mine Waste

From 1958 to 1985 the Wellington plant received coal by rail, then cleaned and prepared it to be shipped away for use. In the coal cleaning process, "coal waste" was developed and deposited on site.

Coal waste was placed in two piles called the "Pond Refuse Pile" (or Coarse Slurry) and the "Plant Refuse Pile" (or Coarse Refuse). Because the piles have MSHA numbers, their engineering designs have been previously approved by MSHA. Although an exhaustive search has been conducted by the operator for more information on design of these piles, relatively little information was found. However, some information was submitted to DOGM (6/25/93) for the MRP entitled "As-Built Specifications, Designs, Approval Letters, and Other Information for the Coal Refuse Piles and Impoundments" (Vol. II, Hydrology Appendix).
All coal waste was placed in the existing disposal areas within the permit area which was approved for this purpose. These "refuse piles" were described above. Most (if not all) of the refuse pile material east of the Price River (Pond Refuse Pile) was deposited "pre-law". At the present time these refuse piles are considered "temporary" [Dwg. E9-3343(1)] because the reclamation plan will utilize some of this material to enhance revegetation. Furthermore, plans are now being conducted to utilize the piles and fines as future fuels.

Another temporary rock and coal waste area has more recently been approved by DOGM. Non-hazardous waste material could be received from the mine in Crandall Canyon. This was a one-time exemption and allowed a total of 600 cys of this material to be stored on-site. The material would have been placed on the northeast side of an existing refuse pile (see Dwg. A9-1470). Refer to Section 528.300 for more detail.

Additionally, it has been proposed that the Wellington area be the site for permanent storage of non-hazardous waste from clean-out material of the sediment pond from the Crandall Canyon Mine. The total amount of this material for
the life of the mine was estimated to be 10,000 cys. The proposed permanent storage area would not result in any additional disturbance (see also Section 528.300).

528.323 Burning and Burn Waste Utilization

Coal and other associated fires have not been a problem in the past at the Wellington site. If, however, a fire begins, it will be extinguished by the operator in accordance with MSHA and the Division. Present plans contain provisions to ensure that only those persons authorized by the operator would be involved in the extinguishing operations.

528.330 Noncoal Waste

There is little noncoal waste associated with the present activities of the Wellington Preparation Plant. However, noncoal waste generated will be hauled off-site to appropriate waste disposal areas.

528.400 Dams, Embankments and Other Impoundments

Refer to Section 5.31 for a discussion on impoundments.
5.30 OPERATIONAL DESIGN CRITERIA AND PLANS (R614-301-530)

5.31 General

Currently there are 6 sediment ponds/containment basins, 2 coal slurry impounding cells, and 2 refuse piles constructed on site, many - associated with the previous coal washing activities of the Wellington site. A description of these facilities follows. There are no plans to construct additional ponds, or impoundments of coal processing waste in the future. Since no underground mining has occurred, none of those structures will be subjected to subsidence.

Ponds and appurtenant features are shown on the following drawings:

- Auxiliary Pond: Dwg. C9-1285
- Road Pond: Dwg. E9-3453
- Heater Dryer Pond: Dwg. E9-3453, A9-1464
- Plant No.1 Pond: Dwg. 4067-6-21
- Slurry Containment Basin: Dwg. D5-0163
- Clearwater Sediment Basin: Dwg. E9-3460
- Clear Water Pipeline: Dwg. E9-3341
Sediment Ponds

This section provides some historical as well as current information about the ponds at Wellington. The historical information has been maintained in the MRP because it continues to have some relevance and also provides information that could be useful for future operations. For more information on the ponds such as the most recent design details, refer to Section 7.42 and the Hydrology Appendix (Volume II) of this MRP.

In the past, the Auxiliary, Road, and Dryer Ponds were designed to contain discharge water from the plant when it was operational. These three pond are now connected in a sequence and function in a series. In 1994, the Dryer Pond was enlarged to contain more runoff from precipitation events (see Section 7.42 and the Hydrology Appendix, Volume II). Historically, the Auxiliary Pond received water from a underground pipeline designed previously to transfer water from the pumphouse area on the east side to the west side of the Price River. This system continues to be functional to transfer water; the Dryer Pond receives groundwater via a subsurface pipe that is believed to originate near the Price River pumphouse, as described in more detail in MRP, Volume III-C, Appendix M.
All three ponds are incised structures. The Auxiliary Pond was constructed with near vertical slopes. The banks are stable with no indication of instability. There was not enough area to bring these slopes to 2h:1v. The Road and Heat Dryer Ponds were constructed with 2h:1v side slopes. There are no embankments for either pond.
Auxiliary / Road Ponds

In past operations, the Auxiliary Pond provided water storage capacity to support plant operations. Water was maintained in the pond for use in plant operations. More recently, pond capacity has been maintained to receive runoff volumes.

The Road Pond is an extension and enlargement of the Auxiliary Pond. The culvert, shown on Dwg. No. E9-3453, connects the ponds to combine their capacities.

Volume Requirements – Volume requirements for the Auxiliary Pond, Road Pond, and Dryer ponds were calculated and have been included in Section 7.42 and the Hydrology Appendix (Volume II). In past coal washing operations, there were four main sources of water inflow into the ponds:

1. Clear water from the Clear Water Pond
2. Plant discharge water
3. Runoff from precipitation events
4. Dryer Pond discharge water.
Dryer Pond

The Heat Dryer Pond once provided water storage capacity for dryer affluent and runoff from precipitation events. The pond was expanded in 1994 (see Dwg. 712e).

Historically, the operator had the capability of filling the Auxiliary Pond (located near the Dryer Pond) on the west side of the property with water directly from the incoming fresh water line from the Clear Water Pond beginning on the east side of the property. Prior to plant start-up, the pond was filled with an adequate volume of water for plant operation.

More recently, water has again been transferred to the west side via the Clear Water Pipeline (refer to MRP, Volume III-C, Appendix M, for more details).
Plant Pond

A new pond was constructed in 1989 to support loading activities at the south plant site. This pond is partially incised and contains principle and emergency spillways.

This is a sediment pond with 2 acres in maximum size and only 5 ft. deep. The pond presently collects run-off from 20.52 acres, including a new coal loading pad, an existing coal refuse pile and the sediment pond itself. For hydrologic computations, refer to Wellington Prep Plant MRP, Volume II, Hydrology Appendix, Watershed No. 5.

As shown on the Stage Volume Curve, the pond has about 30,200 cu. ft. of sediment capacity compared to the anticipated 5-year load of 29,400 cu. ft. The pond will be cleaned out when the sediment load reaches 18,120 cu. ft or 60% of design capacity. If sediment were completely even in the bottom of the pond, the clean-out elevation would be 5,335 ft. 8 in. Two sediment markers are placed, one near the pond inlet, the other near the outlet, as shown in Dwg. 4067-6-8A, MRP, Drawings Appendix, Volume III-B.
When the average sediment level at these markers reaches 5,335 ft 8 in, the pond will be cleaned out. There is 32,560 cu. ft. of storage between the maximum sediment level and the decant. Between the decant and the principle spillway is 48,830 cu. ft. of storage. Since a 10-yr storm produced only 48,841 cu. ft. of run-off, there would be little discharge from a 10-yr storm until the decant is opened, even if the pond was full to the decant at the time of the storm. If a storm or series of storms should fill the pond above the principle spillway, the spillway is sized to pass a 25-yr storm without discharge over the emergency spillway. There is 1 ft. between the pond crest and the emergency spillway, but since the emergency spillway is not needed for a 25-yr flood, the free board requirements are assured.

To insure that pond effluent meets water quality standards, the decant is placed 1 ft. above the maximum sediment line, and the principle spillway and decant are equipped with oil skimmers. The emergency spillway, which is a rip-rapped channel would never discharge in a flood of even a 25-yr recurrence interval. To insure the integrity of the pond, there will be quarterly general inspections.
The pond is partially incised and drains through a ditch that is incised (DD-4). The slope of the pond bank is 3h:1v. Plan and section views of the sediment pond are included in Dwg. 4067-6-21, MRP, Drawings Appendix, Volume III-B.
Slurry Containment Basin

The Slurry Containment Basin was built to prevent refuse material spilled during slurry pipeline breaks from entering the Price River. The pond is partially incised. The basin was built to contain a 25 yr, 24 hr storm. No discharge is anticipated, however a rip-rapped emergency spillway is provided to protect the integrity of the structure (see hydrologic computations in Wellington Prep Plant's MRP, Volume II, Hydrology Appendix, Watershed No. 7).
Clearwater Sediment Basin

The Clearwater Pond once provided storage for clarified water that was used in coal processing. Storm run-off calculations are contained in the Hydrology Appendix, Volume II.
Impoundments

Upper and Lower Refuse Ponds

The upper and lower refuse ponds received water carrying the slurry waste material from early coal cleaning process. Initial settlement of waste material occurred here. The upper and lower refuse dikes impound this waste cell. Partially clarified water was decanted to the lower refuse pond, where water clarification was completed. This cell is bounded by the North Dike and Lower Refuse Dike. Clarified water was decanted into the Clearwater Sediment Basin, where it is impounded by the Clear Water Dike. Storm runoff calculations are contained in the Hydrology Appendix, Volume II. These impoundments meet the criteria of MSHA regulations and have been approved by MSHA.
Appendix C describes the construction of the Upper and Lower Dikes, the Clear Water Dike, and the North Dike. The Upper and Lower Refuse Dikes, and the North Dike were proposed to be raised in three phases (see Appendix D & E). Phase I, increasing the height of the lower refuse dike, was completed in 1985. Dwg. E9-3460 shows the lower refuse dike, as constructed. Phases II and III, to raise the upper refuse and north dikes, have not been implemented. Since no fine refuse is being produced at this time, there are no current plans to raise the dikes.
Refuse Piles

West of the Price River (Plant Refuse Pile)

During plant operations oversize rock was hauled to a refuse pile near the main building. The rock was placed and compacted with dozer. Slopes are 2h:1v or less and are stable.

East of the Price River (Pond Refuse Pile)

Coarse slurry from the refuse ponds was removed with a Sauerman dragline in 1983 to provide additional pond capacity. The material was compacted in 2 foot lifts with a dozer to form the pond refuse pile. Slopes are 2h:1v or less and are stable. Analysis of the waste material from both refuse piles is contained in Appendix E, p. E-3. It is non-toxic and non-acid forming.

A modular coal fines wash plant, truck loadout, slurry tank, NW tailings impoundment and retention berm, power lines and above ground waterline are to be constructed for the coal refuse ponds area. This use is entirely consistent with all previous activities that have occurred and been permitted in the past. Site grading, diversions and sediment control measures will direct any runoff that may occur into the Lower Refuse Pond in a non erosive manner, as shown on Drawing T1-9597 and discussed further in Section 7.42 page 7 or into Alternative Sediment Control Areas (ASCA's) 4 & 5. Practically no growth medium exists where the wash plant is to be built. The small quantity of topsoil required for reclamation will be borrowed as described in the current MRP. The remainder of the facilities will be located on the previously disturbed coarse
refuse pile. Two 12 inch diameter above ground steel pipelines will carry water along Farnham Road from the supply well and Clear Water Pond. One 12 inch tailings pipeline will carry tailings across the coarse refuse pile to the NW tailings impoundment. A tailings impoundment and retention berm must be constructed prior to mining in order to provide tailings storage in the upper coal refuse basin area. If this impoundment was not constructed prior to mining, tailings would have to be placed in the Clear Water Pond until the northwest area of the upper refuse pond could begin receiving tails. Electric power lines will be reinstalled in the existing corridors across the Price River, but no construction or equipment use will occur within the 100-foot buffer zone on either side of the Price River. Buffer zone signs will be placed at the 100-foot location in the vicinity of the power line crossing to prevent inadvertent disturbances within the buffer zone. Power lines will also be installed parallel to the waterlines along Farnham Road to pumps at the supply well and Clear Water Pond. The substation will be located safely beside the wash plant. A pump will be placed in the existing well at the river pumphouse, however no construction activities will occur in the pumphouse vicinity.

The type of equipment to be installed to process the coal fines includes conveyors, screens, hoppers, flotation columns, chutes, launders, centrifuges, pumps, compressors, tanks, and cyclones. Construction will be phased to allow for some production of washed fines to begin, after approval of the mining and operation minor amendment, while the final additions to the plant are made.
The final reclamation of the plant site on the coarse refuse pile is consistent with the current reclamation plan. Regrading activities are included in the modification to the bond calculations even though very minimal earthmoving is required. Dismantling and disposal of the surface facilities are the focus of the revised bond calculations. Reclamation issues will be expanded on in future submittals at a time when the dredge is in operation in the lower refuse basin.

A new tailings berm will be constructed within the Northwest corner of the Upper Refuse pond to replace the existing berm (Ref. Drawing 712a). The new berm will be constructed based on the design criteria generally described in the enclosed letters and sketches from RB&G Engineers, Inc., from Mr. Brad Price to Mr. Rick Hoggan of Millcreek Engineering Company September 5 and October 2, 1997 (Ref. Appendix NW). Existing coal fines from the Northwest area will be excavated and stockpiled in the Plant North Storage Pile to allow for construction of the Proposed Northwest Tailings Pond. This Proposed Northwest Pond is located within the upper pond, and is required to separate initial plant tailings from the initial dredging operation to facilitate proper settling of tails. The existing NW berm consists of coarse refuse material placed on top of earlier coal fines and must be replaced with the new berm, as the existing berm will not provide a stable structure as coal fines are reclaimed by the dredging operation.

Additional construction activities required prior to introduction of water into the Upper and Lower ponds includes grubbing and removal of all vegetation, dry excavation of a starting area in each refuse pond for initial dredge placement, rehabilitation of existing drain structures, and trimming of the shallow fines at pond edges. All coal fines material located at the pond edges at less than 4 feet of thickness cannot be accessed by the dredge and will be excavated and cast toward the center of the ponds to facilitate reclaim by the dredging operation. Grubbing, excavations within the refuse ponds and edges material trimming will be conducted from the coal fines surface to maintain operations within the disturbed area only.

Surface mining of these ponds is described elsewhere in this permit application.
The permit application plan will include a general plan for each proposed sediment pond, water impoundment, and coal processing waste bank, dam or embankment within the proposed permit area.

No underground mining is proposed at the Wellington Preparation Plant, therefore, subsidence not expected to be concern.
The operator will use proper sediment control practices, including disturbing the smallest practicable area at any one time for the coal loading facility operations and prompt backfilling, grading and revegetation for areas that are no longer needed. Any backfilled material will be stabilized to promote a reduction in the rate and volume of runoff (see also Revegetation Plan, Section 3.40).

On-site sediment control facilities include sediment ponds, impoundments, diversion ditches, culverts and berms. Straw bales and/or silt fences may be used in ditches or in small areas that do not drain to a sediment pond to control erosion. For further discussions on sediment control, refer to Sections 7.32 and 7.42.
5.33 IMPOUNDMENTS (R614-301-533)

533.100

There are no permanent impoundments. Geotechnical and stability analyses of the refuse (slurry) ponds is contained in Appendices C, D, and E. To facilitate removal of coal fines from the refuse ponds a new retention area will be constructed in the upper refuse pond to form the Northwest tailings area. Geotechnical and stability analyses for this impoundment are addressed in Appendix NW.

533.200

Foundations for all impoundments were designed so that foundation and abutments for the impounding structure are stable under all conditions of construction and operation of the impoundment. Sufficient foundation investigations and laboratory testing was performed in order to determine the design requirements for foundation stabilization.

All vegetative and organic materials were removed and foundations excavated and prepared to resist failure.

533.300

Slope protection will be provided as needed to protect against surface erosion at the site and protect against sudden drawdown.
Faces of embankments and surrounding areas will be vegetated. Faces where water is impounded will be stabilized in accordance with standard practices, including rip-rap if necessary.

There are no highwalls or steep cut slopes above impoundments.

The Upper, Lower Refuse (Slurry) and Clearwater Ponds comply with the requirements of R614-301-512.240, R614-301-514.300, R614-301-515.200, R614-301-533.100 thru R614-301-600, R614-301-733.220 thru R614-301-733.224, and R614-301-743 and have been approved by MSHA.

Geotechnical investigation, operation and maintenance requirements and stability analyses are as discussed in Appendices C, D and E, including design assumption and calculations.
Design, construction and maintenance requirements for the five sediment ponds are discussed in Section 5.31, Appendix B, and Volume II (Hydrology Appendix) of this plan.
5.34 ROADS (R614-301-534)

Operator commits to control damage to public or private property from road operation. All road embankments have a minimum static safety factor of 1.3. They were also designed to ensure environmental protection and safety appropriate for their planned period of use (including consideration of the type and size of equipment used; the design and reconstruction of roads incorporate appropriate limits for grade, width, surface materials, and other necessary design criteria established by the Division).

The primary roads meet the requirements of R645-301-358, R645-301-527.100, R645-301-527.230, R645-301-534.110, R645-301-534.200, R645-301-542.600, and R645-301-762.

The primary roads are: located on the most stable available surfaces; are surfaced with rock, crushed gravel, asphalt or other material approved by the Division for anticipated traffic; are routinely maintained to include repairs to the road surface, blading, filling potholes and adding replacement gravel on asphalt.

Roads have been designed, built and described in "Revised Application For Permit Revision and Incidental Boundary Change: Wellington Preparation Plant", November 1, 1989 submittal. Any departures from as-built designs were described in "As-built Facilities: Genwal's Wellington Coal Load-Out Facility", December 21, 1989 submittal. The roads designs are outlined below.

The introduction of coal haulage truck transportation facilities to the Wellington site, under the existing permit, mandated the construction of a Class I road for the load-out activities as defined by the Division. The new 3,700 ft. haul road was constructed for the load-out facility. The haul road is shown on Dwg. 4067-6-8A, 4067-6-9A of the Appendix. ditches run parallel to the road on the uphill side. The location of the ditches are shown in Dwgs. 4067-6-8A, 4067-6-9A (Rev.), and 4067-6-10A (Rev.). The haulage and access road begin at the coal load-out facility and proceeds generally northwesterly to the west boundary line of the owner's property. The road then connects with a county spur road used to access county borrow pits. This spur road in turn connects to the Carbon County Ridge Road. The haulage road passes over sparse grass and shrub lands as described in the existing Operation and Reclamation Plan and does not cross any intermittent or perennial streams.

Nontoxic or nonacid-forming substances were used in road surfacing.

The haulage road will be retained throughout the life of the coal load-out facilities. Should retention of the road be desired beyond this time, maintenance and drainage control will be provided. Upon permanent termination of all operations within this property, reclamation will be in accordance with pertinent Division rules.

Taking advantage of the gently undulating topography, the haulage road was positioned generally on the existing surface after removal and storage of topsoil and base preparation. blading of a 30 ft. base along the right-of-way dressed and prepared a road base configuration to accommodate coal truck travel parameters.
Simple placement on the existing surface topsoil resulted in vertical maximum pitch of less than 4 percent (see Dwg. 4067-6-9A). These grades are restricted to relatively short distance and the overall grade is approximately 2.0 percent.

Potential erosion from roadway surfaces is controlled through the use of surface treatments such as gravel or asphalt and through roadside ditches and culverts. Drainage designs for the road are shown on 4067-6-8A, 4067-6-9A (Rev.), 4067-6-10A (Rev.), 4067-6-17, 4067-6-17A, 4067-6-18, and 4-67-6-21.

Topsoil stockpiles constructed from the road and load-out facility were discussed in Section 2.31 (231.22 and 231.400). For as-built topsoil stockpile drawings showing contours, heights, cross-sections, and volumes, refer to Drawings 4067-6-18, 4067-6-19 and 4067-6-20.

For more information on roads of the Wellington Preparation Plant, refer to sections 5.12 of this plan.

For reclamation plan description and timetable refer to Section 5.40. Reclamation plan is shown on Drawing E9-3342.
The present operations at the Wellington Coal Preparation Plant do not produce excess spoil.
COAL MINE WASTE (645-301-536)

Disposal Facility Design

Coal mine waste has been placed in a controlled manner in the Coarse Refuse Piles and the Refuse (Slurry) Ponds. It has been placed to ensure mass stability and prevent mass movement during the after construction. Disposal facilities for coal mine waste were constructed in 1956, at initiation of coal processing. In 1995, the coarse refuse pile was analyzed for foundation stability and found to be stable with a safety factor of greater than 1.5. The coarse refuse pile foundation was found to be stable under current conditions.

Disposal facilities were designed using prudent engineering practices. The foundation and abutments of these facilities are not exposed to subsidence. Foundation investigations are found in Appendices C, E, and H.

Plant Refuse Pile Design

A design has been prepared for the proposed final configuration of the Plant Refuse Pile. The proposed final configuration is shown on drawing 536a. Proposed pile side slopes are less than 2H:1V. The proposed top of the pile is flat and will be gouged to enhance revegetation and inhibit storm water runoff. The proposed final configuration of the Plant Refuse Pile as shown on Drawing 536a will accommodate approximately 10,000 cys of additional material prior to capping with 4 feet of soil cover. Typical cross sections of the final pile configuration are shown on drawing 536b. The final top elevation of the proposed pile with 4 feet of soil cover is 5370 feet and the maximum difference in height between the top of the pile and the adjacent land surface is about 40 feet.

Geotechnical Considerations: A geotechnical investigation was completed by AGEC, Inc. in June 1995. A copy of the AGEC report is included as Appendix H. The geotechnical investigation found the existing pile to be stable with a safety factor against failure in the foundation soils of greater than 1.5 based on a projected maximum pile height of 50 feet.

Sediment Control: The presently proposed smaller pile has approximately the same footprint as the existing refuse pile. During operation, sediment control will continue to be provided by the Plant Sediment Basin (which was designed to contain runoff from the Course Refuse Pile and the Load-Out Pad, see design hydrology prepared by Coal Systems, Inc. presented in the Hydrologic Appendix Watershed #5). Treatment is also provided to runoff from the East, West, and South side slopes of the Plant Refuse Pile which are tributary to ASCA #3 (see analysis in Hydrologic Appendix). After final reclamation, sediment control will be provided through vegetation cover (see slope erosion computations attached for inclusion with Watershed #6).

Runoff Control: Storm runoff from upstream areas will be conveyed around the final pile through Ditch UD1A on the south and a final reclamation channel to be constructed through the Plant Sediment Pond. Hydrologic and hydraulic computations for these ditches are provided in the Hydrologic Appendix Watershed #3 and Watershed #5, respectively.
Runoff from the top of the pile will be controlled through constructing the top of the pile flat and gouging the top of the pile as described in Section 3.41. The top of the pile will receive approximately 1 gouge for each 50 square feet of top surface (or approximately 6% of the surface will be gouged based on approximate gouge dimensions of 18" x 25"). Runoff computation is provided in Hydrologic Appendix Watershed #6.

Waste Placement: In accordance with the operations plan, the Plant Refuse Pile will receive approximately 10,000 cubic yards of sediment pond clean-out material. This material will be spread out in a maximum of 8 inch lifts, allowed to dry to within 2% of optimum soil moisture and compacted by rubber tired construction equipment to achieve a minimum of 90% of Standard Proctor.

536.300 Excess Spoil Fills

No coal mine waste is disposed of in excess spoil fills.

536.400 Coal Mine Waste Impounding Structures

Stability of coal mine waste impounding structures is discussed in Appendices C and E.

536.500

No coal mine waste is disposed of in underground workings.

536.600

No underground development waste is present on site.

536.700

No coal processing waste will be returned to underground working.

536.800 Coal Processing Wast Banks

Coal processing waste dams and embankments comply with the requirements of MSHA, 30 CFR 77.216-1 and CFR 77.216-2. Geotechnical investigation, borings and test pits, and the character of
overburden and bedrock were investigated by a registered engineer. The investigation reports are contained in Appendices C, E, and H.

There is no groundwater flow or seepage in the area of the embankments. There is no possibility of mudflows, rock debris falls or landslides into the embankments or impounded material.

536.900 Refuse Piles

See discussion of Plant Refuse Pile Design in Section 536.100 above.
5.36 COAL MINE WASTE (645-301-536)

536.100 - 536.200 Disposal Facility Design

Coal mine waste has been placed in a controlled manner in the Coarse Refuse Piles and the Refuse (Slurry) Ponds. It has been placed to ensure mass stability and prevent mass movement during the after construction. Disposal facilities for coal mine waste were constructed in 1956, at initiation of coal processing. In 1995, the coarse refuse pile was analyzed for foundation stability and found to be stable with a safety factor of greater than 1.5. The coarse refuse pile foundation was found to be stable under current conditions.

Disposal facilities were designed using prudent engineering practices. The foundation and abutments of these facilities are not exposed to subsidence. Foundation investigations are found in Appendices C, E, and H.

Plant Refuse Pile Design

A design has been prepared for the proposed final configuration of the Plant Refuse Pile. The proposed final configuration is shown on drawing 536a. Proposed pile side slopes are flatter than 2H:1V. The proposed top of the pile is sloped at 0.5% as shown on Drawing 536a. The proposed final configuration of the Plant Refuse Pile as shown on Drawing 536a will accommodate approximately 10,000 cubic yards of additional material prior to capping with 4 feet of soil cover. Typical cross sections of the final pile configuration are shown on drawing 536b. The final top elevation of the proposed pile with 4 feet of soil cover is 5370 feet and the maximum difference in height between the top of the pile and the adjacent land surface is about 40 feet.

Geotechnical Considerations: A geotechnical investigation was completed by AGEC, Inc. in June 1995. A copy of the AGEC report is included as Appendix H. The geotechnical investigation found the existing pile to be stable with a safety factor against failure in the foundation soils of greater than 1.5 based on a projected maximum pile height of 50 feet.

Sediment Control: The presently proposed smaller pile has approximately the same footprint as the existing refuse pile. During operation, sediment control will continue to be provided by the Plant Sediment Basin (which was designed to contain runoff from the Course Refuse Pile and the Load-Out Pad, see design hydrology prepared by Coal Systems, Inc. presented in the Hydrologic Appendix Watershed #5). Treatment is also provided to runoff from the east, west, and south side slopes of the Plant Refuse Pile which are tributary to ASCA #3 (see analysis in Hydrologic Appendix). After final reclamation, sediment control will be provided through vegetation cover (see slope erosion computations attached for inclusion with Watershed #6).

Runoff Control: Storm runoff from upstream areas will be conveyed around the final pile through Ditch UD1A on the south and a final reclamation channel to be constructed through the Plant Sediment Pond. An additional reclamation channel will also be provided along the south west toe of the Plant Refuse Pile to help assure that ponding will not occur at the toe of the pile. These ditches have been designed for the 100-year 6-hour storm event. Hydrologic and hydraulic computations for these ditches are provided in the Hydrologic Appendix Watershed #3 and Watershed #5, respectively.
Demonstration of the adequacy of the 100-year 6-hour storm runoff protection for the top and side slopes of the Plant Refuse Pile is included in the Hydrologic Appendix Watershed #6 along with demonstration of the adequacy of the proposed vegetated erosion protection.

Waste Placement: In accordance with the operations plan, the Plant Refuse Pile will receive approximately 10,000 cubic yards of sediment pond clean-out material. This material will be spread out in a maximum of 8 inch lifts, allowed to dry to within 2% of optimum soil moisture and compacted by rubber tired construction equipment to achieve a minimum of 90% of Standard Proctor. Each lift shall be inspected as described in Section 5.14 prior to placement of overlying materials. Certified refuse pile design is presented on drawings 536a and 536b.

536.300 Excess Spoil Fills

No coal mine waste is disposed of in excess spoil fills.

536.400 Coal Mine Waste Impounding Structures

Stability of coal mine waste impounding structures is discussed in Appendices C and E.

536.500

No coal mine waste is disposed of in underground workings.

536.600

No underground development waste is present on site.

536.700

No coal processing waste will be returned to underground working.

536.800 Coal Processing Waste Banks

Coal processing waste dams and embankments comply with the requirements of MSHA; 30 CFR 77.216-1 and CFR 77.216-2. Geotechnical investigation, borings and test pits, and the character of
overburden and bedrock were investigated by a registered engineer. The investigation reports are contained in Appendices C, E, and H.

There is no groundwater flow or seepage in the area of the embankments. There is no possibility of mudflows, rock debris falls or landslides into the embankments or impounded material.

536.900 Refuse Piles

5.37 REGRADED SLOPES (R614-301-537)

537.100

There are no steep cut slopes in the permit area.

537.200

No spoil or underground development waste will be disposed on the site.
5.40. RECLAMATION PLAN

5.41. GENERAL

5.41.1. thru 5.41.4. CESSATION OF OPERATIONS

At such time that the coal preparation and loading activities are completed, all the affected areas at the Wellington Coal Preparation Plant will be closed, backfilled, or otherwise permanently reclaimed in accordance with the R645 Rules and the approved permit.

5.42. NARRATIVES, MAPS AND PLANS.

5.42.1. TIMETABLE.

Reclamation Plan - West of the Price River

The disturbed areas occupied by the Coal Cleaning Plant buildings, railroad tracks, roads and structures are projected for more than 30 years of future operation. It is probable that the plant area including the plant railroad track will continue as an industrial land use classification in the event the Operator abandons the area. However, the reclamation plan is based on a return of the disturbed area to the pre-disturbance land use of undeveloped land.

The execution of the reclamation plan will begin with the decision to terminate the operation of the coal cleaning facilities and return of the disturbed land to the pre-disturbance land use is as follows:

Reclamation Timetable - West of Price River

<table>
<thead>
<tr>
<th>Estimated Completion Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Months</td>
<td>(1) Dismantle and remove surface facilities; dispose of demolished concrete in the track hopper, office basement and other areas 2 feet below the reclaimed surface elevation.</td>
</tr>
<tr>
<td>3 Months</td>
<td>(1) (Maintain Dryer Sediment Pond and Plant Sediment Pond in operation until removal is authorized by the Division.) Grade to final contours and prepare the seedbed. If the completion of the preparation of the seedbed is not timely for fall seeding, the area will be seeded the following March-April.</td>
</tr>
<tr>
<td>Year 2</td>
<td>(1) Reseed as necessary in the spring or fall planting seasons.</td>
</tr>
<tr>
<td>Year 3-5</td>
<td>(1) Monitor revegetation success. (2) Measure success of revegetation.</td>
</tr>
</tbody>
</table>

5.40 1 10/23/96
(3) Remove sedimentation controls (including regrading of the Dryer Sediment Pond and Plant Sediment Pond) when authorized to do so by the Division and the disturbed area has been stabilized and revegetated. Revegetate disturbed areas in accordance with the Revegetation Plan for miscellaneous areas (see Appendix I of the Determination of Completeness Response).

(4) Seal monitoring wells west of the Price River.

East of the Price River

The execution of the Plan to reclaim the refuse disposal area east of the Price River will begin with a determination that the area is filled to capacity or with the decision to terminate the operation of the Coal Cleaning Plant operations. The refuse disposal area is estimated to have a life exceeding 30 years. The pumphouse area will be required for the life of the Coal Cleaning Plant. The reclamation plan assumes that all facilities east of the Price River will be reclaimed concurrently with the facilities west of the Price River. The reclamation plan is based on returning all disturbed areas to a pre-disturbed land use of "undeveloped land".

Reclamation Timetable - East of Price River

<table>
<thead>
<tr>
<th>Estimated Completion Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td>(1) Dismantle and remove surface facilities including pumphouse area, river water collection well, slurry pipeline, etc.</td>
</tr>
<tr>
<td></td>
<td>(2) Demolish and dispose of concrete in voids 2 feet below grade (pumphouse sump).</td>
</tr>
<tr>
<td>11 Months</td>
<td>(1) Grade all areas to final contours as shown on Map E9-3342. Place soil cover on Coarse Slurry Pond Refuse Pile, Upper and Lower Refuse Basins, river pump house and slurry pipeline areas. Prepare the seedbed in accord with the revegetation plan.</td>
</tr>
<tr>
<td></td>
<td>(2) Seed all disturbed areas in accord with the revegetation plan in September-October. If the seedbed preparation is not timely for fall seeding, the areas will be seeded the following March-April seeding season.</td>
</tr>
<tr>
<td>Year 2</td>
<td>(1) Reseed as necessary in the spring or fall.</td>
</tr>
<tr>
<td>Year 3-5</td>
<td>(1) Monitor for revegetation progress.</td>
</tr>
<tr>
<td></td>
<td>(2) Remove clear water pond by grading the impounding structure against the lower refuse dike as shown on Map E9-3342. Revegetate the disturbed area in accordance with the revegetation plan.</td>
</tr>
</tbody>
</table>
5.42.2. THRU 5.42.7.42. BACKFILLING AND GRADING PLAN.

Reclaimed surface contours are shown on Drawing No. E9-3342. The reclamation plan includes the removing of all buildings and revegetation of all disturbed areas. The ground surface will be graded to the contours shown on Drawing No. E9-3342 and revegetated. The reclamation cover and revegetation plan is discussed in Section 3.41. The Plant Coarse Refuse Pile will be covered with 48 inches of top soil. The Coarse Slurry Pond Refuse Pile will be covered with 48 inches of top soil. The Upper and Lower Refuse basins will be covered with 48 inches of top soil. Two permanent diversion ditches will serve to protect the refuse basins from runoff from surrounding areas. The permanent diversion ditch on the east side of the Upper Refuse Basin conveys runoff flows north to the Siaperas Ditch. The proposed permanent ditch along the east side of the Lower Refuse Basin will convey runoff flows to the Price river. See hydrologic and hydraulic calculations in Volume II - Hydrology Appendix. A discussion of final reclaimed surface drainage patterns is presented in Section 7.60.

1. Coarse Slurry Pond Area

The surface of the Coarse Slurry Pond Refuse Pile, Upper Refuse Basin, and Lower Refuse Basin will be graded as shown on drawing E9-3342. Except for the North Dike on the Siaperas ditch side, final surface slopes will be much flatter than 2 horizontal to 1 vertical. The North Dike on the Siaperas ditch side will be maintained at 2 horizontal to 1 vertical. Final slopes across the reclaimed surface of the refuse will have factors of safety against slope failure which are better than or equal to the minimum required safety factors (minimum long term safety factor of 1.5, see stability analysis for refuse dikes in appendices C, D, and E).

The top of the Upper Refuse Dike will be graded even with the final surface contours to preclude the impoundment of any water following reclamation. The top of the Lower Refuse Dike will be graded even with the final surface contours to preclude impounding any water.

The downstream face of the Upper Refuse Dike will be regraded to a 5:1 slope to reduce the potential for erosion. Upon completion of subgrade grading, a 48 inch soil cover will be placed over the Upper and Lower Refuse basins.

The Clear Water Pond will be used to provide sedimentation control for the refuse disposal area during reclamation. Upon achieving adequate revegetation success, the Clear Water Dike will be graded against the Lower Refuse Dike and revegetated.

2. Pumphouse Area

The pumphouse area will be regraded to smooth contours and cover concrete foundations with at least two feet of soil. When the River Water Collection well was constructed, the material removed from the well was piled around the circumference. The surface portion of the well casing will be removed (at least two feet below final grade). The well will then be filled with soil from the pumphouse area.

5.40 3 10/23/96
5.42.2. THRU 5.42.7.42. BACKFILLING AND GRADING PLAN.

2a. Modular Coal Fines Wash Plant Area

The surface of the modular coal fines wash plant area will be graded as a continuation of the approved plan shown on Drawing No. E9-3342. The topsoil borrow required is about 1,182 cubic yards and will be obtained from topsoil borrow area "B" (see Drawing No. G9-3511 and Topsoil Balance Calculations, Section 2.40, page 1c).

Prior to topsoiling, all areas that have not been recently graded will be scarified to break up any hardpan that may exist. Gravel material used throughout the plant area will be salvaged where possible. Three feet of cover material will be placed over the area of the wash plant where the Coarse Slurry Pond Refuse exists. Then topsoil placement of 1 ft. over the entire area will be done with either scrapers or small dozers. The topsoil will be pocked a few inches deep in preparation for the revegetation treatment per the revegetation plan in Section 3.41.
3. **Area West of the Price River**

The main plant facilities area west of the Price River will be regraded as shown on the Map E9-3342 following the removal of the surface facilities. Culverts beneath the plant railroad system will be removed and the surface regraded to maintain drainage to the culverts beneath the D&RG Railroad Mainline. The fills constructed for the plant railroad system and the ponds will be contoured to blend with the surrounding areas. The diversion ditch will be regraded as shown on Map E9-3342. The regraded areas will be prepared and seeded in accordance with the revegetation plan (see Section 3.41).

4. **Refuse Disposal Area West of Price River (Plant Refuse Pile)**

The surface of the plant refuse pile will be graded to the final slopes as shown on drawings 536a and 536b. A 48 inch soil cover will be placed over the refuse pile to provide a medium for achieving revegetation success. Final reclamation channels will be constructed around the pile as shown on Drawing 536a.

5. **Top Soil Borrow Areas**

During the removal of required top soil from the borrow areas (see Drawing G9-3511 for potential top soil borrow area sites), the top soil borrow areas will be graded as shown on Map E9-3342. The surface of the top soil borrow areas will then be ripped, prepared and seeded in accordance with the revegetation plan (see Section 3.41).

Refer to Section 2.41 for a discussion of the top soil borrow areas and Section 7.60 for a discussion of final reclamation drainage patterns.

5.42.8. RECLAMATION COST ESTIMATE

Detailed calculations of the reclamation cost are presented in Appendix J. The total estimated reclamation cost including project management, engineering, and contingency is presented in Section 8.30.1.40.
<table>
<thead>
<tr>
<th>EVENT</th>
<th>Est. Starting Date</th>
<th>Probable Completion Date</th>
<th>Last Finish Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial removal of metal siding from main bldg.</td>
<td>2-Dec-96</td>
<td>12-Dec-96</td>
<td>22-Dec-96</td>
</tr>
<tr>
<td>Remove gearbox from main conveyor</td>
<td>4-Dec-96</td>
<td>7-Dec-96</td>
<td>9-Dec-96</td>
</tr>
<tr>
<td>Remove headset from main conveyor</td>
<td>5-Dec-96</td>
<td>7-Dec-96</td>
<td>9-Dec-96</td>
</tr>
<tr>
<td>Disconnect power from main bldg.</td>
<td>2-Jan-97</td>
<td>4-Jan-97</td>
<td>5-Jan-97</td>
</tr>
<tr>
<td>Remove gearbox from dryer feed structure</td>
<td>7-Jan-97</td>
<td>9-Jan-97</td>
<td>14-Jan-97</td>
</tr>
<tr>
<td>Remove headset from dryer feed structure</td>
<td>8-Jan-97</td>
<td>10-Jan-97</td>
<td>15-Jan-97</td>
</tr>
<tr>
<td>Remove conveyor rollers from dryer feed structure</td>
<td>9-Jan-97</td>
<td>14-Jan-97</td>
<td>19-Jan-97</td>
</tr>
<tr>
<td>Demolish dryer area</td>
<td>7-Dec-96</td>
<td>7-Mar-97</td>
<td>21-Apr-97</td>
</tr>
<tr>
<td>Demolish main conveyor structure</td>
<td>7-Dec-96</td>
<td>12-Dec-96</td>
<td>17-Dec-96</td>
</tr>
<tr>
<td>Remove gearbox from main bldg dryer feed crossover at loadout</td>
<td>11-Jan-97</td>
<td>13-Jan-97</td>
<td>15-Jan-97</td>
</tr>
<tr>
<td>Remove headset from main bldg dryer feed crossover at loadout</td>
<td>13-Jan-97</td>
<td>15-Jan-97</td>
<td>17-Jan-97</td>
</tr>
<tr>
<td>Remove rollers from main bldg dryer feed crossover at loadout</td>
<td>15-Jan-97</td>
<td>20-Jan-97</td>
<td>25-Jan-97</td>
</tr>
<tr>
<td>Remove all shaker tables</td>
<td>20-Jan-97</td>
<td>19-Feb-97</td>
<td>6-Mar-97</td>
</tr>
<tr>
<td>Remove all desilting tables</td>
<td>19-Feb-97</td>
<td>21-Mar-97</td>
<td>5-Apr-97</td>
</tr>
<tr>
<td>Remove motor control center</td>
<td>19-Feb-97</td>
<td>21-Mar-97</td>
<td>5-Apr-97</td>
</tr>
<tr>
<td>Demolish main building</td>
<td>5-Apr-97</td>
<td>2-Oct-97</td>
<td>30-Jan-98</td>
</tr>
</tbody>
</table>
Recent Reclamation Activities

In recent years (1997-1999), the following reclamation activities have been conducted at the Wellington Preparation Plant site.

1. Demolition and removal of all buildings on the west side of Price River including the offices, shops, heat dryer, track hopper, storehouse, coal carbonization lab, plant pumphouse, oil storage building and the main wash plant.

2. The following structures and support facilities were removed from the site: electric substation, raw coal conveyors, coarse refuse bin, slurry pipeline, and some associated pipeline structures.

3. General clean-up of the area was conducted including removing or burial of foundation concrete, powerline poles, existing scrap metal from storage areas, and all other waste products and debris from the general area.

4. Final site grading of the area was also accomplished.

5. Soil surveys were conducted in areas that could be used to replace the approved borrow areas (if needed for future postmining land use changes).

6. Removal of the two (2) topsoil storage piles that were located near the access road were relocated to another topsoil storage location near the Coarse Refuse Pile within the existing permit area.

Proposed New Reclamation

To continue these reclamation activities NEICO has approved a contractor to remove the remaining support structures that elevate the slurry pipeline across the railroad tracks, the bottomlands of the property, and the Price River (see Figures 5.40-1 and 5.40.2). A description of the remaining structures follows.

During past coal cleaning operations at the Wellington Preparation Plant, a Slurry Pipeline transferred waste material from the main plant on the west side of the Price River to the Slurry Ponds on the east side of the river. Most of the pipeline itself has been removed from the property (with the exception of several lengths that have been cut, stacked and prepared for removal). However, the vertical support structures that elevated...
the pipeline across the railroad tracks and the Price River drainage remains on the property. There are eleven (11) of these steel support structures spaced approximately 75 ft apart. Height of the structures is close to 35 ft. Most of the support structures are joined together near the top of them by horizontal cross beams that once supported the slurry pipeline. The vertical supports have been set in concrete footings, most of which are near the surface of the ground -- with exception of the structures near the Price River. The footings near the river are approximately 3 ft above the ground surface.

It is NEICO's intention to have all of these materials removed from the site including the vertical supports, horizontal cross beams and above-ground concrete.

Description of Proposed Reclamation Procedures

A crew will begin the reclamation activities by removing all nuts, bolts and other items that currently secure the vertical support structures and horizontal cross beams. Once this work is accomplished equipment will be moved on-site. The equipment will include the following:

- Pick-up trucks
- Dump trucks
- Case 580 Backhoe
- 65 T Crane
- Tractor/trailer (45 ft)

The equipment will be mobilized to the site entering from the west gate for most of the work. Some work, however, may also need to be done from the east side of the river. In this case the Pipeline Slurry Road will be used to access the area.

The equipment will be demobilized in the large flat areas near the site where the buildings and other surface facilities were once located. From this site the equipment will be walked to the reclamation site via existing dirt roads. All work will be conducted within existing disturbed areas and mostly from these existing roads. It may be necessary for the crane, backhoe or other vehicles to leave the dirt roads for a short distance. For example, due to height of the crane, it may not be able to work from the road on the north side of the structures because of powerlines. In this case it may be necessary for the crane to use the dirt road and then travel under the lines to a working
area just off the road. In this or similar events, when vehicles are off the road, an impervious barrier will be placed underneath the working equipment once in place. This impervious barrier (e.g. brattice material) will prevent oil or other fluid leaks from dropping to the soils in the area. Also on-hand will be absorbent pillows (also called "pigs") to absorb and remove any fluids from the brattice material if leaks do occur. Once the steel structures are dismantled the crane will lift the structures, set them to a staging area where they will soon be placed on trailers and hauled away.

Riparian Area

The riparian vegetation near the Price River where the reclamation activities will occur is dominated two by non-native plant species: tamarisk (*Tamarisk chinensis*) and common reed (*Phragmites communis*). Little or no work is expected to be necessary in the riparian vegetation immediately adjacent to the Price River, but some tamarisk plants in the area may need to be removed.

Sediment Control

Sediment control to prevent sediments from any disturbance from entering the Price River will be accomplished by existing control structures (in the mobilization and demobilization areas) and by the use of straw bales (in the work area) if the equipment gets close to the Price River.

Railroad Notification

The railroad will be notified of the reclamation activities. Any specifications, guidelines, conditions, restrictions, etc. required by the railroad company will be reviewed and appropriately addressed.

Revegetation

If there is any disturbance to the existing soils or vegetation of the area, these areas will be seeded with the approved mixture shown in Section 3.41, "Revegetation Seed Mixture C: Plant Species for Revegetation of the Riparian Community". This mixture is also shown on Table 5.40-1 of this section.
Table 5.40-1
Revegetation Seed Mixture C:
Plant Species for Revegetation of the Riparian Community

<table>
<thead>
<tr>
<th>Botanical Names *</th>
<th>Common Names</th>
<th>Seeding Rates** (lbs/Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron repatum</td>
<td>Streambank Wheatgrass</td>
<td>2.00</td>
</tr>
<tr>
<td>Bromus inermis</td>
<td>Smooth Bromegrass</td>
<td>3.00</td>
</tr>
<tr>
<td>Elymus lanceolatus</td>
<td>Thickspike Wheatgrass</td>
<td>2.00</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>Saltgrass</td>
<td>0.50</td>
</tr>
<tr>
<td>Elymus cinsereus</td>
<td>Great Basin Wildrye</td>
<td>3.00</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>Kentucky Bluegrass</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.00</td>
</tr>
<tr>
<td>Forbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aster chilensis</td>
<td>Pacific Aster</td>
<td>1.00</td>
</tr>
<tr>
<td>Melilotus officinalis</td>
<td>Yellow Sweet Clover</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysothamnus nauseosus</td>
<td>Rubber Rabbitbrush</td>
<td>1.00</td>
</tr>
<tr>
<td>Salix exigua</td>
<td>Sandbar Willow</td>
<td>3.00</td>
</tr>
<tr>
<td>Salix spp.</td>
<td>Willow</td>
<td>3.00</td>
</tr>
<tr>
<td>Sarcobatus vermiculatus</td>
<td>Greasewood</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21.50</td>
</tr>
</tbody>
</table>

* Based on seed availability, species may be substituted by a qualified botanist.
** Pounds pure live seed per acre drilled. Amounts should be doubled for broadcasting.
5.50 RECLAMATION DESIGN CRITERIA AND PLANS

See discussion in Section 5.42 above.
Spoil Pile

The "Spoil Pile" on the property near the Road Pond is mislabeled. The pile is actually "subsoil" from excavation of that pond. A map indicating this has been submitted (Dwg. E9-3341). The sign on this pile will also be changed to indicated "Subsoil Pile".

This pile will be reclaimed by placing it back into the pond followed by revegetation.

Coal Processing Waste

The new reclamation plan described above commits to covering the slurry pond with 48 inches of substitute material based on new soil sampling from the waste material and additional borrow areas. Refer to Appendix J, Sec. 3.41 (6/16/95) and Sec. 2.22 (11/10/94) for details of the plan.

Coal Material

As described in Section 3.41, located near the Surface Facilities Area is the portion of the property that was used in the past for product coal storage and processing. Reclamation of this area was also described in Section 3.41.
During recent reclamation activities the coal storage and processing area was cleared of all remaining concrete, steel, debris, etc. and graded to be consistent with the approved reclamation plan. During these activities, a discontinuous berm was created in anticipation of a proposed post-mining land use change for a pending contract to sell portions of the property. Location of this berm is shown on Fig. 5.53-1. When completed (or rendered continuous), the future berm could be used to separate watershed areas between land owners.

Recent soil sampling and laboratory results suggest the material used to construct the discontinuous (future) berm may have elevated boron levels that could potentially inhibit growth of some plant species at the time of final revegetation. Because of this potential, unless the berm is re-sampled or evidence is provided that indicates the boron levels will not be detrimental to plant growth, the material used to created the berm will be placed on the Coarse Refuse Pile and later covered with 4 ft of material at the time of final reclamation. If, however, evidence is provided that this material is non-toxic to plant life, the berm will be graded in-place, blended to the natural surroundings, and reclaimed to the approved reclamation plan.